singrdk/base/Applications/Runtime/Full/System/DateTime.cs

786 lines
33 KiB
C#
Raw Normal View History

2008-03-05 09:52:00 -05:00
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
2008-11-17 18:29:00 -05:00
namespace System
{
2008-03-05 09:52:00 -05:00
using System;
using System.Threading;
using System.Globalization;
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
using CultureInfo = System.Globalization.CultureInfo;
using Microsoft.Singularity.V1.Services;
// This value type represents a date and time. Every DateTime
// object has a private field (Ticks) of type Int64 that stores the
// date and time as the number of 100 nanosecond intervals since
// 12:00 AM January 1, year 1 A.D. in the proleptic Gregorian Calendar.
//
// DateTime spans from 1 A.D. to ~29247 A.D.
//
// For a description of various calendar issues, look at
//
// Calendar Studies web site, at
// http://serendipity.nofadz.com/hermetic/cal_stud.htm.
//
//
// Warning about 2 digit years
// As a temporary hack until we get new DateTime <;->; String code,
// some systems won't be able to round trip dates less than 1930. This
// is because we're using OleAut's string parsing routines, which look
// at your computer's default short date string format, which uses 2 digit
// years on most computers. To fix this, go to Control Panel ->; Regional
// Settings ->; Date and change the short date style to something like
// "M/d/yyyy" (specifying four digits for the year).
//
//| <include path='docs/doc[@for="DateTime"]/*' />
[StructLayout(LayoutKind.Auto)]
public struct DateTime : IComparable, IFormattable
{
// Number of 100ns ticks per time unit
public const long TicksPerMillisecond = 10000;
public const long TicksPerSecond = TicksPerMillisecond * 1000;
public const long TicksPerMinute = TicksPerSecond * 60;
public const long TicksPerHour = TicksPerMinute * 60;
public const long TicksPerDay = TicksPerHour * 24;
// Number of milliseconds per time unit
private const int MillisPerSecond = 1000;
private const int MillisPerMinute = MillisPerSecond * 60;
private const int MillisPerHour = MillisPerMinute * 60;
private const int MillisPerDay = MillisPerHour * 24;
// Number of days in a non-leap year
private const int DaysPerYear = 365;
// Number of days in 4 years
private const int DaysPer4Years = DaysPerYear * 4 + 1;
// Number of days in 100 years
private const int DaysPer100Years = DaysPer4Years * 25 - 1;
// Number of days in 400 years
private const int DaysPer400Years = DaysPer100Years * 4 + 1;
// Number of days from 1/1/0001 to 12/31/1600
private const int DaysTo1601 = DaysPer400Years * 4;
// Number of days from 1/1/0001 to 12/30/1899
private const int DaysTo1899 = DaysPer400Years * 4 + DaysPer100Years * 3 - 367;
// Number of days from 1/1/0001 to 12/31/9999
private const int DaysTo10000 = DaysPer400Years * 25 - 366;
private const long MinTicks = 0;
private const long MaxTicks = DaysTo10000 * TicksPerDay - 1;
private const long MaxMillis = (long)DaysTo10000 * MillisPerDay;
private const long FileTimeOffset = DaysTo1601 * TicksPerDay;
private const int DatePartYear = 0;
private const int DatePartDayOfYear = 1;
private const int DatePartMonth = 2;
private const int DatePartDay = 3;
private static readonly int[] DaysToMonth365 = {
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365};
private static readonly int[] DaysToMonth366 = {
0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366};
//| <include path='docs/doc[@for="DateTime.MinValue"]/*' />
public static readonly DateTime MinValue = new DateTime(MinTicks);
//| <include path='docs/doc[@for="DateTime.MaxValue"]/*' />
public static readonly DateTime MaxValue = new DateTime(MaxTicks);
//
// NOTE yslin: Before the time zone is introduced, ticks is based on 1/1/0001 local time.
//
private long ticks;
// Constructs a DateTime from a tick count. The ticks
// argument specifies the date as the number of 100-nanosecond intervals
// that have elapsed since 1/1/0001 12:00am.
//
//| <include path='docs/doc[@for="DateTime.DateTime"]/*' />
public DateTime(long ticks) {
if (ticks < MinTicks || ticks > MaxTicks)
throw new ArgumentOutOfRangeException("ticks", "ArgumentOutOfRange_DateTimeBadTicks");
this.ticks = ticks;
}
[NoHeapAllocation]
private DateTime(long ticksFound, int ignoreMe) {
this.ticks = ticksFound;
2008-11-17 18:29:00 -05:00
if ((ulong)ticks >(ulong)MaxTicks) {
if (ticks > MaxTicks) {
2008-03-05 09:52:00 -05:00
ticks = MaxTicks;
2008-11-17 18:29:00 -05:00
}
else {
2008-03-05 09:52:00 -05:00
ticks = MinTicks;
}
}
}
// Constructs a DateTime from a given year, month, and day. The
// time-of-day of the resulting DateTime is always midnight.
//
//| <include path='docs/doc[@for="DateTime.DateTime1"]/*' />
public DateTime(int year, int month, int day) {
ticks = DateToTicks(year, month, day);
}
// Constructs a DateTime from a given year, month, day, hour,
// minute, and second.
//
//| <include path='docs/doc[@for="DateTime.DateTime3"]/*' />
public DateTime(int year, int month, int day, int hour, int minute, int second) {
ticks = DateToTicks(year, month, day) + TimeToTicks(hour, minute, second);
}
// Constructs a DateTime from a given year, month, day, hour,
// minute, and second.
//
//| <include path='docs/doc[@for="DateTime.DateTime5"]/*' />
public DateTime(int year, int month, int day, int hour, int minute, int second, int millisecond) {
ticks = DateToTicks(year, month, day) + TimeToTicks(hour, minute, second);
if (millisecond < 0 || millisecond >= MillisPerSecond) {
throw new ArgumentOutOfRangeException("millisecond", String.Format("ArgumentOutOfRange_Range", 0, MillisPerSecond - 1));
}
ticks += millisecond * TicksPerMillisecond;
if (ticks < MinTicks || ticks > MaxTicks)
throw new ArgumentException("Arg_DateTimeRange");
}
// Returns the DateTime resulting from adding the given
// TimeSpan to this DateTime.
//
//| <include path='docs/doc[@for="DateTime.Add"]/*' />
public DateTime Add(TimeSpan value) {
return new DateTime(ticks + value._ticks);
}
// Returns the DateTime resulting from adding a number of
// time units to this DateTime.
private DateTime Add(long value, int scale) {
long millis = value * scale;
if (millis <= -MaxMillis || millis >= MaxMillis) {
throw new ArgumentOutOfRangeException("ArgumentOutOfRange_AddValue");
}
return new DateTime(ticks + millis * TicksPerMillisecond);
}
// Returns the DateTime resulting from adding a number of
// days to this DateTime. The result is computed by rounding the
// fractional number of days given by value to the nearest
// millisecond, and adding that interval to this DateTime. The
// value argument is permitted to be negative.
//
//| <include path='docs/doc[@for="DateTime.AddDays"]/*' />
public DateTime AddDays(long value) {
return Add(value, MillisPerDay);
}
// Returns the DateTime resulting from adding a number of
// hours to this DateTime. The result is computed by rounding the
// fractional number of hours given by value to the nearest
// millisecond, and adding that interval to this DateTime. The
// value argument is permitted to be negative.
//
//| <include path='docs/doc[@for="DateTime.AddHours"]/*' />
public DateTime AddHours(long value) {
return Add(value, MillisPerHour);
}
// Returns the DateTime resulting from the given number of
// milliseconds to this DateTime. The result is computed by rounding
// the number of milliseconds given by value to the nearest integer,
// and adding that interval to this DateTime. The value
// argument is permitted to be negative.
//
//| <include path='docs/doc[@for="DateTime.AddMilliseconds"]/*' />
public DateTime AddMilliseconds(long value) {
return Add(value, 1);
}
// Returns the DateTime resulting from adding a number of
// minutes to this DateTime. The result is computed by rounding the
// fractional number of minutes given by value to the nearest
// millisecond, and adding that interval to this DateTime. The
// value argument is permitted to be negative.
//
//| <include path='docs/doc[@for="DateTime.AddMinutes"]/*' />
public DateTime AddMinutes(long value) {
return Add(value, MillisPerMinute);
}
// Returns the DateTime resulting from adding the given number of
// months to this DateTime. The result is computed by incrementing
// (or decrementing) the year and month parts of this DateTime by
// months months, and, if required, adjusting the day part of the
// resulting date downwards to the last day of the resulting month in the
// resulting year. The time-of-day part of the result is the same as the
// time-of-day part of this DateTime.
//
// In more precise terms, considering this DateTime to be of the
// form y / m / d + t, where y is the
// year, m is the month, d is the day, and t is the
// time-of-day, the result is y1 / m1 / d1 + t,
// where y1 and m1 are computed by adding months months
// to y and m, and d1 is the largest value less than
// or equal to d that denotes a valid day in month m1 of year
// y1.
//
//| <include path='docs/doc[@for="DateTime.AddMonths"]/*' />
public DateTime AddMonths(int months) {
if (months < -120000 || months > 120000) throw new ArgumentOutOfRangeException("months", "ArgumentOutOfRange_DateTimeBadMonths");
int y = GetDatePart(DatePartYear);
int m = GetDatePart(DatePartMonth);
int d = GetDatePart(DatePartDay);
int i = m - 1 + months;
if (i >= 0) {
m = i % 12 + 1;
y = y + i / 12;
}
else {
m = 12 + (i + 1) % 12;
y = y + (i - 11) / 12;
}
int days = DaysInMonth(y, m);
if (d > days) d = days;
return new DateTime(DateToTicks(y, m, d) + ticks % TicksPerDay);
}
// Returns the DateTime resulting from adding a number of
// seconds to this DateTime. The result is computed by rounding the
// fractional number of seconds given by value to the nearest
// millisecond, and adding that interval to this DateTime. The
// value argument is permitted to be negative.
//
//| <include path='docs/doc[@for="DateTime.AddSeconds"]/*' />
public DateTime AddSeconds(long value) {
return Add(value, MillisPerSecond);
}
// Returns the DateTime resulting from adding the given number of
// 100-nanosecond ticks to this DateTime. The value argument
// is permitted to be negative.
//
//| <include path='docs/doc[@for="DateTime.AddTicks"]/*' />
public DateTime AddTicks(long value) {
return new DateTime(ticks + value);
}
// Returns the DateTime resulting from adding the given number of
// years to this DateTime. The result is computed by incrementing
// (or decrementing) the year part of this DateTime by value
// years. If the month and day of this DateTime is 2/29, and if the
// resulting year is not a leap year, the month and day of the resulting
// DateTime becomes 2/28. Otherwise, the month, day, and time-of-day
// parts of the result are the same as those of this DateTime.
//
//| <include path='docs/doc[@for="DateTime.AddYears"]/*' />
public DateTime AddYears(int value) {
return AddMonths(value * 12);
}
// Compares two DateTime values, returning an integer that indicates
// their relationship.
//
//| <include path='docs/doc[@for="DateTime.Compare"]/*' />
[NoHeapAllocation]
public static int Compare(DateTime t1, DateTime t2) {
if (t1.ticks > t2.ticks) return 1;
if (t1.ticks < t2.ticks) return -1;
return 0;
}
// Compares this DateTime to a given object. This method provides an
// implementation of the IComparable interface. The object
// argument must be another DateTime, or otherwise an exception
// occurs. Null is considered less than any instance.
//
// Returns a value less than zero if this object
//| <include path='docs/doc[@for="DateTime.CompareTo"]/*' />
public int CompareTo(Object value) {
if (value == null) return 1;
if (!(value is DateTime)) {
throw new ArgumentException("Arg_MustBeDateTime");
}
long t = ((DateTime)value).ticks;
if (ticks > t) return 1;
if (ticks < t) return -1;
return 0;
}
// Returns the tick count corresponding to the given year, month, and day.
// Will check the if the parameters are valid.
private static long DateToTicks(int year, int month, int day) {
if (year >= 1 && year <= 9999 && month >= 1 && month <= 12) {
int[] days = IsLeapYear(year)? DaysToMonth366: DaysToMonth365;
if (day >= 1 && day <= days[month] - days[month - 1]) {
int y = year - 1;
int n = y * 365 + y / 4 - y / 100 + y / 400 + days[month - 1] + day - 1;
return n * TicksPerDay;
}
}
throw new ArgumentOutOfRangeException("ArgumentOutOfRange_BadYearMonthDay");
}
// Return the tick count corresponding to the given hour, minute, second.
// Will check the if the parameters are valid.
private static long TimeToTicks(int hour, int minute, int second)
{
//TimeSpan.TimeToTicks is a family access function which does no error checking, so
//we need to put some error checking out here.
2008-11-17 18:29:00 -05:00
if (hour >= 0 && hour < 24 && minute >= 0 && minute < 60 && second >= 0 && second < 60) {
2008-03-05 09:52:00 -05:00
return (TimeSpan.TimeToTicks(hour, minute, second));
}
throw new ArgumentOutOfRangeException("ArgumentOutOfRange_BadHourMinuteSecond");
}
// Returns the number of days in the month given by the year and
// month arguments.
//
//| <include path='docs/doc[@for="DateTime.DaysInMonth"]/*' />
public static int DaysInMonth(int year, int month) {
if (month < 1 || month > 12) throw new ArgumentOutOfRangeException("ArgumentOutOfRange_Month");
int[] days = IsLeapYear(year)? DaysToMonth366: DaysToMonth365;
return days[month] - days[month - 1];
}
// Checks if this DateTime is equal to a given object. Returns
// true if the given object is a boxed DateTime and its value
// is equal to the value of this DateTime. Returns false
// otherwise.
//
//| <include path='docs/doc[@for="DateTime.Equals"]/*' />
public override bool Equals(Object value) {
if (value is DateTime) {
return ticks == ((DateTime)value).ticks;
}
return false;
}
// Compares two DateTime values for equality. Returns true if
// the two DateTime values are equal, or false if they are
// not equal.
//
//| <include path='docs/doc[@for="DateTime.Equals1"]/*' />
[NoHeapAllocation]
public static bool Equals(DateTime t1, DateTime t2) {
return t1.ticks == t2.ticks;
}
//| <include path='docs/doc[@for="DateTime.FromFileTimeUtc"]/*' />
public static DateTime FromFileTimeUtc(long fileTime) {
if (fileTime < 0)
throw new ArgumentOutOfRangeException("ArgumentOutOfRange_FileTimeInvalid");
// This is the ticks in Universal time for this fileTime.
long universalTicks = fileTime + FileTimeOffset;
return new DateTime(universalTicks);
}
// Returns the date part of this DateTime. The resulting value
// corresponds to this DateTime with the time-of-day part set to
// zero (midnight).
//
//| <include path='docs/doc[@for="DateTime.Date"]/*' />
public DateTime Date {
get { return new DateTime(ticks - ticks % TicksPerDay); }
}
// Returns a given date part of this DateTime. This method is used
// to compute the year, day-of-year, month, or day part.
[NoHeapAllocation]
private int GetDatePart(int part) {
// n = number of days since 1/1/0001
int n = (int)(ticks / TicksPerDay);
// y400 = number of whole 400-year periods since 1/1/0001
int y400 = n / DaysPer400Years;
// n = day number within 400-year period
n -= y400 * DaysPer400Years;
// y100 = number of whole 100-year periods within 400-year period
int y100 = n / DaysPer100Years;
// Last 100-year period has an extra day, so decrement result if 4
if (y100 == 4) y100 = 3;
// n = day number within 100-year period
n -= y100 * DaysPer100Years;
// y4 = number of whole 4-year periods within 100-year period
int y4 = n / DaysPer4Years;
// n = day number within 4-year period
n -= y4 * DaysPer4Years;
// y1 = number of whole years within 4-year period
int y1 = n / DaysPerYear;
// Last year has an extra day, so decrement result if 4
if (y1 == 4) y1 = 3;
// If year was requested, compute and return it
if (part == DatePartYear) {
return y400 * 400 + y100 * 100 + y4 * 4 + y1 + 1;
}
// n = day number within year
n -= y1 * DaysPerYear;
// If day-of-year was requested, return it
if (part == DatePartDayOfYear) return n + 1;
// Leap year calculation looks different from IsLeapYear since y1, y4,
// and y100 are relative to year 1, not year 0
bool leapYear = y1 == 3 && (y4 != 24 || y100 == 3);
int[] days = leapYear? DaysToMonth366: DaysToMonth365;
// All months have less than 32 days, so n >> 5 is a good conservative
// estimate for the month
int m = n >> 5 + 1;
// m = 1-based month number
while (n >= days[m]) m++;
// If month was requested, return it
if (part == DatePartMonth) return m;
// Return 1-based day-of-month
return n - days[m - 1] + 1;
}
// Returns the day-of-month part of this DateTime. The returned
// value is an integer between 1 and 31.
//
//| <include path='docs/doc[@for="DateTime.Day"]/*' />
public int Day {
[NoHeapAllocation]
get { return GetDatePart(DatePartDay); }
}
// Returns the day-of-week part of this DateTime. The returned value
// is an integer between 0 and 6, where 0 indicates Sunday, 1 indicates
// Monday, 2 indicates Tuesday, 3 indicates Wednesday, 4 indicates
// Thursday, 5 indicates Friday, and 6 indicates Saturday.
//
//| <include path='docs/doc[@for="DateTime.DayOfWeek"]/*' />
public DayOfWeek DayOfWeek {
[NoHeapAllocation]
get { return (DayOfWeek)((ticks / TicksPerDay + 1) % 7); }
}
// Returns the day-of-year part of this DateTime. The returned value
// is an integer between 1 and 366.
//
//| <include path='docs/doc[@for="DateTime.DayOfYear"]/*' />
public int DayOfYear {
[NoHeapAllocation]
get { return GetDatePart(DatePartDayOfYear); }
}
// Returns the hash code for this DateTime.
//
//| <include path='docs/doc[@for="DateTime.GetHashCode"]/*' />
public override int GetHashCode() {
return (int)ticks ^ (int)(ticks >> 32);
}
// Returns the hour part of this DateTime. The returned value is an
// integer between 0 and 23.
//
//| <include path='docs/doc[@for="DateTime.Hour"]/*' />
public int Hour {
[NoHeapAllocation]
get { return (int)((ticks / TicksPerHour) % 24); }
}
// Returns the millisecond part of this DateTime. The returned value
// is an integer between 0 and 999.
//
//| <include path='docs/doc[@for="DateTime.Millisecond"]/*' />
public int Millisecond {
[NoHeapAllocation]
get { return (int)((ticks / TicksPerMillisecond) % 1000); }
}
// Returns the minute part of this DateTime. The returned value is
// an integer between 0 and 59.
//
//| <include path='docs/doc[@for="DateTime.Minute"]/*' />
public int Minute {
[NoHeapAllocation]
get { return (int)((ticks / TicksPerMinute) % 60); }
}
// Returns the month part of this DateTime. The returned value is an
// integer between 1 and 12.
//
//| <include path='docs/doc[@for="DateTime.Month"]/*' />
public int Month {
[NoHeapAllocation]
get { return GetDatePart(DatePartMonth); }
}
[NoHeapAllocation]
private static DateTime GetUtcTime()
{
return ProcessService.GetUtcTime();
}
// Returns a DateTime representing the current date and time. The
// resolution of the returned value depends on the system timer. For
// Windows NT 3.5 and later the timer resolution is approximately 10ms,
// for Windows NT 3.1 it is approximately 16ms, and for Windows 95 and 98
// it is approximately 55ms.
//
//| <include path='docs/doc[@for="DateTime.Now"]/*' />
public static DateTime Now {
[NoHeapAllocation]
get { return GetUtcTime(); }
}
//| <include path='docs/doc[@for="DateTime.UtcNow"]/*' />
public static DateTime UtcNow {
[NoHeapAllocation]
get { return GetUtcTime(); }
}
public static DateTime BootTime {
get { return Now - ProcessService.GetUpTime(); }
}
// Returns the second part of this DateTime. The returned value is
// an integer between 0 and 59.
//
//| <include path='docs/doc[@for="DateTime.Second"]/*' />
public int Second {
[NoHeapAllocation]
get { return (int)((ticks / TicksPerSecond) % 60); }
}
// Returns the tick count for this DateTime. The returned value is
// the number of 100-nanosecond intervals that have elapsed since 1/1/0001
// 12:00am.
//
//| <include path='docs/doc[@for="DateTime.Ticks"]/*' />
public long Ticks {
[NoHeapAllocation]
get { return ticks; }
}
// Returns the time-of-day part of this DateTime. The returned value
// is a TimeSpan that indicates the time elapsed since midnight.
//
//| <include path='docs/doc[@for="DateTime.TimeOfDay"]/*' />
public TimeSpan TimeOfDay {
get { return new TimeSpan(ticks % TicksPerDay); }
}
// Returns a DateTime representing the current date. The date part
// of the returned value is the current date, and the time-of-day part of
// the returned value is zero (midnight).
//
//| <include path='docs/doc[@for="DateTime.Today"]/*' />
public static DateTime Today {
get {
long ticks = Now.Ticks;
return new DateTime(ticks - ticks % TicksPerDay);
}
}
// Returns the year part of this DateTime. The returned value is an
// integer between 1 and 9999.
//
//| <include path='docs/doc[@for="DateTime.Year"]/*' />
public int Year {
[NoHeapAllocation]
get { return GetDatePart(DatePartYear); }
}
// Checks whether a given year is a leap year. This method returns true if
// year is a leap year, or false if not.
//
//| <include path='docs/doc[@for="DateTime.IsLeapYear"]/*' />
[NoHeapAllocation]
public static bool IsLeapYear(int year) {
return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
}
// Constructs a DateTime from a string. The string must specify a
// date and optionally a time in a culture-specific or universal format.
// Leading and trailing whitespace characters are allowed.
//
//| <include path='docs/doc[@for="DateTime.Parse"]/*' />
public static DateTime Parse(String s) {
throw new Exception("Parse not supported in Bartok");
}
// Constructs a DateTime from a string. The string must specify a
// date and optionally a time in a culture-specific or universal format.
// Leading and trailing whitespace characters are allowed.
//
//| <include path='docs/doc[@for="DateTime.ParseExact"]/*' />
public static DateTime ParseExact(String s, String format) {
throw new Exception("Parse not supported in Bartok");
}
//| <include path='docs/doc[@for="DateTime.Subtract"]/*' />
public TimeSpan Subtract(DateTime value) {
return new TimeSpan(ticks - value.ticks);
}
//| <include path='docs/doc[@for="DateTime.Subtract1"]/*' />
public DateTime Subtract(TimeSpan value) {
return new DateTime(ticks - value._ticks);
}
//| <include path='docs/doc[@for="DateTime.ToFileTimeUtc"]/*' />
public long ToFileTimeUtc() {
long t = this.ticks - FileTimeOffset;
if (t < 0) throw new ArgumentOutOfRangeException("ArgumentOutOfRange_FileTimeInvalid");
return t;
}
//| <include path='docs/doc[@for="DateTime.ToLongDateString"]/*' />
public String ToLongDateString() {
return (ToString("D"));
}
//| <include path='docs/doc[@for="DateTime.ToLongTimeString"]/*' />
public String ToLongTimeString() {
return (ToString("T"));
}
//| <include path='docs/doc[@for="DateTime.ToShortDateString"]/*' />
public String ToShortDateString() {
return (ToString("d"));
}
//| <include path='docs/doc[@for="DateTime.ToShortTimeString"]/*' />
public String ToShortTimeString() {
return (ToString("t"));
}
//| <include path='docs/doc[@for="DateTime.ToString"]/*' />
public override String ToString() {
return ToString(null);
}
//| <include path='docs/doc[@for="DateTime.ToString3"]/*' />
public String ToString(String format) {
// US-centric representation for now, until we have proper
// globalization in Singularity.
//
// The only special support here is for RFC1123 ("R" / "r")
if (format != null && (format.Equals("R") || format.Equals("r"))) {
return String.Format("{0:s}, {1:d02} {2:s} {3:d} {4:d02}:{5:d02}:{6:d02} GMT",
GetShortWeekday(), Day, GetShortMonth(), Year,
Hour, Minute, Second);
2008-11-17 18:29:00 -05:00
}
else {
2008-03-05 09:52:00 -05:00
return String.Format("{0:d}/{1:d}/{2:d} {3:d}:{4:d}:{5:d}",
Month, Day, Year, Hour, Minute, Second);
}
}
public DateTime ToLocalTime() {
long tickCount = this.ticks;
return new DateTime(tickCount);
}
//| <include path='docs/doc[@for="DateTime.ToUniversalTime"]/*' />
public DateTime ToUniversalTime() {
long tickCount = this.ticks;
return new DateTime(tickCount);
}
//| <include path='docs/doc[@for="DateTime.operatorADD"]/*' />
public static DateTime operator +(DateTime d, TimeSpan t) {
return new DateTime(d.ticks + t._ticks);
}
//| <include path='docs/doc[@for="DateTime.operatorSUB"]/*' />
public static DateTime operator -(DateTime d, TimeSpan t) {
return new DateTime(d.ticks - t._ticks);
}
//| <include path='docs/doc[@for="DateTime.operatorSUB1"]/*' />
public static TimeSpan operator -(DateTime d1, DateTime d2) {
return new TimeSpan(d1.ticks - d2.ticks);
}
//| <include path='docs/doc[@for="DateTime.operatorEQ"]/*' />
[NoHeapAllocation]
public static bool operator ==(DateTime d1, DateTime d2) {
return d1.ticks == d2.ticks;
}
//| <include path='docs/doc[@for="DateTime.operatorNE"]/*' />
[NoHeapAllocation]
public static bool operator !=(DateTime d1, DateTime d2) {
return d1.ticks != d2.ticks;
}
//| <include path='docs/doc[@for="DateTime.operatorLT"]/*' />
[NoHeapAllocation]
public static bool operator <(DateTime t1, DateTime t2) {
return t1.ticks < t2.ticks;
}
//| <include path='docs/doc[@for="DateTime.operatorLE"]/*' />
[NoHeapAllocation]
public static bool operator <=(DateTime t1, DateTime t2) {
return t1.ticks <= t2.ticks;
}
//| <include path='docs/doc[@for="DateTime.operatorGT"]/*' />
[NoHeapAllocation]
public static bool operator >(DateTime t1, DateTime t2) {
return t1.ticks > t2.ticks;
}
//| <include path='docs/doc[@for="DateTime.operatorGE"]/*' />
[NoHeapAllocation]
public static bool operator >=(DateTime t1, DateTime t2) {
return t1.ticks >= t2.ticks;
}
//
// IValue implementation
//
//| <include path='docs/doc[@for="DateTime.GetTypeCode"]/*' />
[NoHeapAllocation]
public override TypeCode GetTypeCode() {
return TypeCode.DateTime;
}
private string GetShortWeekday()
{
// Hardcoded USA-English until we support globalization
2008-11-17 18:29:00 -05:00
switch (DayOfWeek) {
2008-03-05 09:52:00 -05:00
case DayOfWeek.Monday : return "Mon";
case DayOfWeek.Tuesday : return "Tue";
case DayOfWeek.Wednesday : return "Wed";
case DayOfWeek.Thursday : return "Thu";
case DayOfWeek.Friday : return "Fri";
case DayOfWeek.Saturday : return "Sat";
case DayOfWeek.Sunday : return "Sun";
}
return null;
}
private string GetShortMonth()
{
// Hardcoded USA-English until we support globalization
2008-11-17 18:29:00 -05:00
switch (Month) {
2008-03-05 09:52:00 -05:00
case 1 : return "Jan";
case 2 : return "Feb";
case 3 : return "Mar";
case 4 : return "Apr";
case 5 : return "May";
case 6 : return "Jun";
case 7 : return "Jul";
case 8 : return "Aug";
case 9 : return "Sep";
case 10 : return "Oct";
case 11 : return "Nov";
case 12 : return "Dec";
}
return null;
}
}
}