singrdk/base/boot/SingLdrArm/Omap3430/debuguart.cpp

265 lines
8.1 KiB
C++
Raw Normal View History

2008-11-17 18:29:00 -05:00
///////////////////////////////////////////////////////////////////////////////
//
// Microsoft Research Singularity
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// UART transport support for debugging
//
//
// Status Constants for reading data from comport
//
#define CP_GET_SUCCESS 0
#define CP_GET_NODATA 1
#define CP_GET_ERROR 2
#define OMAP_UART1_BASE 0x4806A000
#define OMAP_UART2_BASE 0x4806C000
///////////////////////////////////////////////////////////////// Serial Port.
//
#define OMAP_CLOCK_RATE 2995200
#define OMAP_CONTROL_PADCONF_UART1_TX (0x17c)
#define OMAP_CONTROL_PADCONF_UART1_CTS (0x180)
#define OMAP_CONTROL_PADCONF_UART2_TX (0x178)
#define OMAP_CONTROL_PADCONF_UART2_CTS (0x174)
// Define COM Port registers.
#define COM_DAT 0x00
#define COM_DLL 0x00 // Divisor Latch (LSB).
#define COM_IEN 0x01 // Interrupt enable register
#define COM_DLM 0x01 // Divisor Latch (MSB).
#define COM_FCR 0x02 // FIFO Control Register.
#define COM_LCR 0x03 // Line Control Register.
#define COM_MCR 0x04 // Modem Control Register.
#define COM_LSR 0x05 // Line Status Register.
#define COM_MSR 0x06 // Modem Status Register.
#define COM_SCR 0x07 // Scratch Register.
#define OMAP_UART_MDR1 0x8
#define OMAP_UART_IER 0x1
#define OMAP_UART_EFR 0x2
// Define bits in the FIFO Control Register (FCR).
#define FCR_ENABLE 0x01
#define FCR_CLEAR_RECEIVE 0x02
#define FCR_CLEAR_TRANSMIT 0x04
// Define bits in the Line Control Register (LCR).
#define LCR_DATA_SIZE 0x03
#define LCR_DLAB 0x80
// Define bits in the Modem Control Register (MCR).
#define MCR_DATA_TERMINAL_READY 0x01
#define MCR_REQUEST_TO_SEND 0x02
#define MCR_OUT1 0x04
#define MCR_OUT2 0x08
#define MCR_LOOPBACK 0x10
#define MCR_INITIALIZE (MCR_DATA_TERMINAL_READY | MCR_REQUEST_TO_SEND)
// Define bits in the Line Status Register (LSR).
#define LSR_DATA_AVAILABLE 0x01
#define LSR_OVERRUN_ERROR 0x02
#define LSR_PARITY_ERROR 0x04
#define LSR_FRAMING_ERROR 0x08
#define LSR_BREAK_SIGNAL 0x10
#define LSR_THR_EMPTY 0x20
#define LSR_THR_LINE_IDLE 0x40
// Defined bits in the Modem Status Register (MSR).
#define MSR_DELTA_CLEAR_TO_SEND 0x01
#define MSR_DELTA_DATA_SET_READY 0x02
#define MSR_DELTA_RING_INDICATOR 0x04
#define MSR_DELTA_CARRIER_DETECT 0x08
#define MSR_CLEAR_TO_SEND 0x10
#define MSR_DATA_SET_READY 0x20
#define MSR_RING_INDICATOR 0x40
#define MSR_CARRIER_DETECT 0x80
//
// Communication functions.
//
static uint32 *uartBase = 0;
static void UartSetBaudRate(uint32 * BaseAddress, uint32 BaudRate)
{
uint32 Divisor = OMAP_CLOCK_RATE / BaudRate;
uint8 Enhanced;
// Disable UART
WriteReg8(BaseAddress + OMAP_UART_MDR1, 0x7);
// Set register configuration mode B
WriteReg8(BaseAddress + COM_LCR, 0xBF);
// Save enhanced mode
Enhanced = ReadReg8(BaseAddress + OMAP_UART_EFR);
WriteReg8(BaseAddress + OMAP_UART_EFR, Enhanced | (1 << 4));
// switch to operational mode
WriteReg8(BaseAddress + COM_LCR, 0);
// clear sleep mode
WriteReg8(BaseAddress + OMAP_UART_IER, 0);
// Set register configuration mode B
WriteReg8(BaseAddress + COM_LCR, 0xBF);
// Write the divisor value to DLL and DLM.
WriteReg8(BaseAddress + COM_DLM, (uint8)((Divisor >> 8) & 0xff));
WriteReg8(BaseAddress + COM_DLL, (uint8)(Divisor & 0xff));
// Restore enhanced mode
WriteReg8(BaseAddress + OMAP_UART_EFR, Enhanced);
// Reset the Line Control Register.
WriteReg8(BaseAddress + COM_LCR, LCR_DATA_SIZE);
// Enable UART
WriteReg8(BaseAddress + OMAP_UART_MDR1, 0);
}
bool BdPortInit(uint32 * BaseAddress, uint32 BaudRate)
{
#define PADCONF_CTS ((1 << 4) | (1 << 3) | (1 << 8))
#define PADCONF_RTS (0)
#define PADCONF_TX (0)
#define PADCONF_RX ((1 << 3) | (1 << 8))
uartBase = BaseAddress;
uint8 * HalpSCM = (uint8 *)OMAP_SCM_BASE;
uint8 * HalpCORE_CM = (uint8 *)OMAP_CORE_CM_BASE;
uint32 Value;
if (BaseAddress == (uint32 *)OMAP_UART1_BASE) {
// Power on the required function and interface units.
Value = ReadReg32(HalpCORE_CM + CM_FCLKEN1_CORE);
Value |= CM_CORE_EN_UART1;
WriteReg32(HalpCORE_CM + CM_FCLKEN1_CORE, Value);
Value = ReadReg32(HalpCORE_CM + CM_ICLKEN1_CORE);
Value |= CM_CORE_EN_UART1;
WriteReg32(HalpCORE_CM + CM_ICLKEN1_CORE, Value);
// Configure uart1 pads per documentation example
WriteReg32(HalpSCM + OMAP_CONTROL_PADCONF_UART1_TX,
PADCONF_TX | (PADCONF_RTS << 16));
WriteReg32(HalpSCM + OMAP_CONTROL_PADCONF_UART1_CTS,
PADCONF_CTS | (PADCONF_RX << 16));
}
else if (BaseAddress == (uint32 *)OMAP_UART2_BASE) {
// Power on the required function and interface units.
Value = ReadReg32(HalpCORE_CM + CM_FCLKEN1_CORE);
Value |= CM_CORE_EN_UART2;
WriteReg32(HalpCORE_CM + CM_FCLKEN1_CORE, Value);
Value = ReadReg32(HalpCORE_CM + CM_ICLKEN1_CORE);
Value |= CM_CORE_EN_UART2;
WriteReg32(HalpCORE_CM + CM_ICLKEN1_CORE, Value);
WriteReg32(HalpSCM + OMAP_CONTROL_PADCONF_UART2_CTS,
PADCONF_CTS | (PADCONF_RTS << 16));
WriteReg32(HalpSCM + OMAP_CONTROL_PADCONF_UART2_TX,
PADCONF_TX | (PADCONF_RX << 16));
}
// Set the default baudrate.
UartSetBaudRate(BaseAddress, BaudRate);
// Set DLAB to zero. DLAB controls the meaning of the first two
// registers. When zero, the first register is used for all byte transfer
// and the second register controls device interrupts.
//
WriteReg8(BaseAddress + COM_LCR,
ReadReg8(BaseAddress + COM_LCR) & ~LCR_DLAB);
// Disable device interrupts. This implementation will handle state
// transitions by request only.
//
WriteReg8(BaseAddress + COM_IEN, 0);
// Reset and disable the FIFO queue.
// N.B. FIFO will be reenabled before returning from this routine.
//
WriteReg8(BaseAddress + COM_FCR, FCR_CLEAR_TRANSMIT | FCR_CLEAR_RECEIVE);
// Configure the Modem Control Register. Disabled device interrupts,
// turn off loopback.
//
WriteReg8(BaseAddress + COM_MCR,
ReadReg8(BaseAddress + COM_MCR) & MCR_INITIALIZE);
// Initialize the Modem Control Register. Indicate to the device that
// we are able to send and receive data.
//
WriteReg8(BaseAddress + COM_MCR, MCR_INITIALIZE);
// Enable the FIFO queues.
WriteReg8(BaseAddress + COM_FCR, FCR_ENABLE);
return true;
}
UINT32 BdPortGetByte(PUINT8 Input)
//++
//
//Routine Description:
//
// Fetch a byte from the debug port and return it.
//
//Arguments:
//
// Input - Returns the data byte.
//
//Return Value:
//
// CP_GET_SUCCESS is returned if a byte is successfully read from the
// kernel debugger line.
// CP_GET_NODATA is returned if timeout.
//
//--
{
//
// Define wait timeout value.
//
#define TIMEOUT_COUNT 1024 * 30 // * 200
//#define TIMEOUT_COUNT 15
UINT8 lsr;
UINT8 value;
UINT32 limitcount = TIMEOUT_COUNT;
UINT8 msr;
msr = ReadReg8(uartBase + COM_MSR);
while (limitcount != 0) {
limitcount--;
lsr = ReadReg8(uartBase + COM_LSR);
if (lsr & LSR_DATA_AVAILABLE) {
value = ReadReg8(uartBase + COM_DAT);
*Input = (UINT8)(value & 0xff);
return CP_GET_SUCCESS;
}
}
return CP_GET_NODATA;
}
void BdPortPutByte(UINT8 Output)
{
// Loop until the device is ready for output
while ((ReadReg8(uartBase + COM_LSR) & LSR_THR_EMPTY) == 0) {
}
// The transmitter regiser is clear and can be written to.
WriteReg8(uartBase + COM_DAT, Output);
}
// End of File.