
S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 1

Introduction to Sing#

Language extensions for Singularity

The Sing# language extends the Spec#/C# family with special support for Singularity’s abstractions such as
message passing and channel contracts.

Table of Contents

1. Brief overview 2

1.1. Channel Contracts 2

1.2. Endpoints 3

1.2.1. Send/receive methods 3

1.3. Switch-Receive statement 4

1.4. Endpoint ownership 5

1.5. TRefs 5

1.6. The Exchange Heap 5

1.6.1. Allocation and de-allocation 6

1.6.2. Ownership tracking 6

2. Reference 7

2.1. Contract syntax and semantics7

2.1.1. Basic contracts 7

2.1.2. Contract states 7

2.1.3. Subroutine states 8

2.1.4. Joins 9

2.1.5. Endpoint states 9

2.1.6. Shorthands 9

2.1.7. Contract extensions 9

2.2. Channel Related Types 11

2.2.1. Message tags 11

2.2.2. Endpoints 11

2.2.3. Endpoint Sets 11

Singularity

Design Note

17

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 2

2.2.4. Endpoint Maps 11

2.2.5. Contracts 11

2.2.6. States 12

2.3. Rep types 12

2.3.1. Pointer-free structs 13

2.3.2. Struct inheritance 13

2.4. Statements 13

2.4.1. Switch receive 13

2.4.2. Overlays 14

2.5. Ownership tracking 15

2.5.1. Fields of tracked types 15

2.6. Non-null types 16

2.6.1. Fields of non-null type 16

3. HistoryError! Bookmark not defined.

1. Brief overview

This section informally presents the main features of the Sing# extensions via examples. Later sections provide
reference style descriptions of all the features.

1.1. Channel Contracts

Channel contracts are central to Singularity’s isolation architecture. Contracts are supported directly in Sing#.
Here’s a contract describing a simple interaction on a channel.

contract C1 {

 in message Request(int x) requires x>0;

 out message Reply(int y);

 out message Error();

 state Start: Request? -> (Reply! or Error!) -> Start;

}

The declaration of contract C1 also declares three messages: Request , Reply, and Error. Each message
declaration specifies the types of arguments contained in the message. For example, Request and Reply
both contain a single integer value, whereas Error does not carry any values. Additionally, each message may
specify Spec# requires clauses restricting the arguments further.

Messages can also be tagged with a direction. The contract is always written from the exporter point of view.
Thus, in the example, Request is a message that can be sent by the importer to the exporter, whereas Reply
and Error are sent from the exporter to the importer. Without a qualifier, messages can travel in both
directions.

After the message declarations, a contract specifies the allowable message interactions via a state machine
driven by send and receive actions. The first state declared is considered the initial state of the interaction. In our
example contract C1, we only declare a single state called Start. After the state name, action Request?
indicates that in the Start state, the export side of the channel is willing to receive (?) a Request message.
Following that the construct (Reply! or Error!) specifies that the exporter sends (!) either a Reply or an Error
message. The last part -> Start specifies that the interaction then continues as in the Start state, thereby
continuing ad-infinitum.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 3

Even though the contract only specifies a single state by name, there is in fact an intermediate state in this
interaction. The state after the first message is received is implicit in the protocol. If we wanted to, we could
declare this state explicitly by writing the contract as follows:

 state Start: Request? -> AfterRequest;

 state AfterRequest: one {

 Reply! -> Start;

 Error! -> Start;

 }

Here we name the intermediate state AfterRequest.

1.2. Endpoints

Channels in Singularity manifest as a pair of endpoints: the importing and exporting sides of the channel. Each
endpoint has a type that specifies what contract the channel adheres to. These endpoint types are implicitly
declared within each contract. A contract C1 is represented as a class, and the endpoint types are nested types
within that class as follows:

C1.Imp // type of import endpoints of channels with contract C1

C1.Exp // type of export endpoints of channels with contract C1

Such contract specific endpoints derive from a common abstract endpoint as shown in the following hierarchy.

1.2.1. Send/receive methods

Each contract specific endpoint contains methods for sending and receiving the messages declared in the
contract. In our example, we have the following implicit methods defined:

C1.Imp {

 void SendRequest(int x);

 void RecvReply(out int y) ;

 void RecvError();

}

C1.Exp {

 void SendReply(int y);

 void SendError();

 void RecvRequest(out int x)

}

Note how the importing endpoint has methods to send the in messages of the contract and to receive the out
messages of the contract, whereas the exporting endpoint has methods to receive the in messages and to send
the out messages. The semantics of the Send methods are that they send the message asynchronously. The
receive methods block until the given message arrives. If a different message arrives first, an error occurs. Such
errors should never occur if the program passes the contract verification check. Unless a receiver knows exactly
what message it requires next, the above receive methods are not convenient. Instead, Sing# provides the
switch receive statement.

Microsoft.Singularity.Channels.Endpoint* in ExHeap

C1.Imp C1.Exp

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 4

1.3. Switch-Receive statement

Consider the following code which waits for either the Reply or Error message on an imported endpoint of type
C1.Imp.

void M(C1.Imp a)

{

 switch receive

 {

 case a.Reply(x):

 Console.WriteLine(“Got reply {0}”, x);

 break;

 case a.Error():

 Console.WriteLine(“Got error”);

 break;

 }

}

The switch receive is a combination of two steps:

1. Blocking for a particular set of messages to be present on a set of endpoints

2. Receiving the set of messages and binding their arguments into local variables.

In the example above, the switch receive has two patterns, either receive Reply on endpoint imp, or Error on the
same endpoint. In the first case, the integer argument of the Reply message is automatically bound to the local
variable x, whose scope is the branch of the case it appears in.

The switch receive construct is however much more general, since patterns can involve multiple endpoints as
shown below. In this example, we have two endpoints a and b on which we can receive reply or error
messages:

void M(C1.Imp a, C1.Imp b)

{

 switch receive

 {

 case a.Reply(x) && b.Reply(y):

 Console.WriteLine(“Got both replies {0} and {1}”, x, y);

 break;

 case a.Error():

 Console.WriteLine(“Got error reply on a”);

 break;

 case b.Error():

 Console.WriteLine(“Got error reply on b”);

 break;

 case a.ChannelClosed():

 Console.WriteLine(“Channel a is now closed”);

 break;

 }

}

The example illustrates that we can wait for particular combinations of messages using the switch receive
statement. The first branch is only taken if the Reply message is received on both endpoints a and b. The last
case contains the patter ChannelClosed(), which is a special pattern that fires when the channel is closed (by
the other party) and no more messages remain to be received.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 5

1.4. Endpoint ownership

Endpoints are precious resources that need to be tracked at compile time in order to perform contract
verification. To simplify this tracking, there is an ownership model associated with endpoints. Each endpoint is
owned by at most one thread at any point in time, or by at most one data structure. E.g., if an endpoint is sent in
a message from thread T1 to thread T2, then ownership of the endpoint changes from T1, to the message, and
then to T2 upon receipt by T2.

To simplify the tracking of endpoints for the static analysis, endpoints can only be held directly in messages and
local variables. This is obviously restrictive and the language provides a way to store endpoints indirectly within
data structures through an abstraction called a TRef..

1.5. TRefs

A TRef is a storage cell of type TRef<T> holding an endpoint of type T. TRef has the following signature.

 class TRef<T> where T:ITracked {

 public TRef([Claims] T i_obj);

 public T Acquire();

 public void Release([Claims] T newObj);

 }

When creating a TRef<T>, the constructor requires an object of type T as argument. The caller must have
ownership of the object at the construction site (as indicated by the [Claims] annotation on the
parameter). After the construction, ownership has been passed to the newly allocated TRef. The Acquire
method is used to obtain the contents of a TRef. If the TRef is full, it returns its contents and transfers
ownership of it to the caller of Acquire. Afterwards, the TRef is said to be empty. Release transfers
ownership of a T object from the caller to the TRef. Afterwards, the TRef is full.

TRefs are thread-safe and will block until full. The ITracked interface is used for call backs. E.g., the
implementation of Endpoints uses these to associate the endpoint with the correct thread whenever the
endpoint changes ownership.

TRefs live in the GC heap and contain a finalizer. If a TRef becomes unreachable when it is full, the
finalizer will dispose of the endpoint contained within. As a result, the channel gets properly closed.

1.6. The Exchange Heap

Since ownership of blocks is transferred from one thread/process to another on message exchanges, we need
a way to allocate and track blocks of memory that can be exchanged in this fashion. The channel system
requires that message arguments are either scalars, or blocks in the exchange heap. There are two kinds of
blocks in the exchange heap: individual blocks, or vectors. Their types are written as follows:

 using Microsoft.Singularity.Channels;

…

 R* in ExHeap pr;

 R[] in ExHeap pv;

The type of pointer pr specifies that it points to an R struct in the exchange heap. ExHeap is actually a
type defined by the runtime system that provides allocation, deallocation and other support for this heap.
The type of pv is a vector of Rs in the exchange heap. The fully qualified name is
Microsoft.Singularity.Channels.ExHeap. The type of R has to be either a primitive value type (int, char,
etc.), an enum, or a rep struct. Rep structs are explained in more detail in section 2.3.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 6

1.6.1. Allocation and de-allocation

Here’s an example of how to allocate blocks in the exchange heap and how to free them.

 rep struct R {

 public int x;

 public int y;

 public R(int a, int b) { this.x = a; this.y = b; }

 }

 void M() {

 R* in ExHeap pr = new[ExHeap] R(1,2);

 int[] in ExHeap pv = new[ExHeap] int[20];

 pr->x = pr->x + pr->y;

 pv[5] = pr->x;

 …

 delete pv;

 delete pr;

 }

Indexing of vectors in the exchange heap is safe through the use of runtime bounds checking. As the
example makes clear, blocks in the exchange heap are explicitly managed, i.e., they have to be explicitly
de-allocated. The ownership checker of Sing# makes helps getting that correct.

1.6.2. Ownership tracking

The compiler tracks ownership of resources such as blocks in the exchange heap (including endpoints that are
implicitly allocated in the exchange heap), as well as special objects in the GC heap with interface ITracked
such as ESets and EMaps (see section 2.2.3). We refer to these as tracked types.

The rules can be summarized as follows. At any point in time, a single stack frame owns a particular tracked
resource. Operations that affect the ownership are:

 new: on completion, the allocated resource is owned by the current stack frame

 delete e: the expression e must evaluate to a pointer or vector in the exchange heap and the current
stack frame must own it. After the operation, the current stack frame no longer owns the resource.

 e.Dispose(): the expression e must evaluate to a GC object with the ITracked interface. The current
stack frame must own the object prior to the call and does no longer own it subsequently.

 return: if a method return type is of tracked type, then the callee must own the resource it returns at the
return point. The caller assumes ownership of the result of the call.

 parameter:

o an unannotated parameter of tracked type is said to be borrowed by the called method, i.e.,
ownership is temporarily transferred from caller to callee, but reverts to the caller upon return.
The callee cannot retain or dispose of the passed resource.

o a parameter of tracked type annotated with [Claims] specifies that ownership of the passed
resource transfers permanently from caller to callee.

 By-ref parameter: on entry, the caller passes ownership permanently of the resource contained in the
ref cell on entry to the callee. On return, the callee passes ownership of the resource contained in the
cell back to the caller. This can be satisfied in 2 ways. Either the cell contains the same resource and

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 7

ownership of the resource was not consumed by the callee, or the cell contains a new resource that the
callee provides and the callee consumes the original resource in the cell.

 Out-parameter: on exit, the cell must contain a resource owned by the callee at the return point and its
ownership transfers to the caller.

2. Reference

2.1. Contract syntax and semantics

Contracts are written from the viewpoint of the exporting party. Thus, if a contract states that it receives a
message M at a certain point, then the exporting party must receive this message, and the importing
party can send that message.

2.1.1. Basic contracts

A contract consists of message type declarations, as well as state declarations. Contracts are named and
possibly generic over types (or other contracts). Syntactically, contracts have the following general form:

contract Id [BoundVars] {

 MessageDeclarations

 StateDeclaration

}

Each message declaration specifies an optional direction, a message name and a sequence of message
argument types. The direction is either in or out, limiting the use of the message to be either received or
sent by the exporting side. Without a directional qualifier, the message can be used in both directions.
The bound variables allow one to parameterize the message by types or contracts.

[in | out] message MessageId [BoundVars](Type [Id], …, Type [Id]);

BoundVars ::= < Id, …, Id >

2.1.2. Contract states

[NOTE: Currently, Sing# only allows the “one” form of states and does not permit mixed send/receive
alternatives]

A state declaration has the following general form:

state StateId [BoundVars]: (one | all) {

 MessageSequence1 ;

 …

 MessageSequencen ;

}

The state identifier names the state. The state kind states whether the list of message sequences should
be interpreted as a choice of one message sequence listed, or an arbitrary interleaving of all message
sequences listed. In the case of a choice, message receives are interpreted as a choice made by the
importer of the contract (the client), message sends are interpreted as a choice made by the exporter (the
server).

If there are both receive and send choices present, we restrict the forms to two cases:

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 8

1. All receives are listed first, all sends are listed second.
In this case, the choice of doing a send is with the importing side of the contract. The exporter
must be willing to receive the listed receive messages, and can only send a message if the queue
is either empty, or contains a message not listed among the receive messages.
There is still a race in such a contract that needs to be resolved in the continuations of the
message sequences starting with a send.

2. All sends are listed first, all receives are listed second.
In this case, the choice of doing a send is with the exporting side of the contract. The importer
must be willing to receive the listed send messages, and can only send a message if the queue is
either empty, or contains a message not listed among the send messages.
There is still a race in such a contract that needs to be resolved in the continuations of the
message sequences starting with a receive.

In the case of all interleavings of messages sequences, the choice of order lies with senders of
messages. For example, the snippet all { M! -> A; N! -> B; } would allow the sender to send message M
and N in any order and the receiver has to be ready to receive them in any order. Similarly, if the
interleaving specifies receives all { M?-> A; N? -> B; }, the choice of order lies with the sender. The
receiver is willing to receive them in any order. For mixed interleavings of sends and receives, the same
reasoning applies: the sender gets to choose the order.

Message sequences start with an action, followed by a continuation.

MessageSequence ::= Action Continuation

Actions are either sends ! or receives ? of messages declared in contracts. The send or receive symbols
are always required, even if the message is declared with a direction in order to improve readability.

Action ::= MessageId [BoundVars]!

 | MessageId [BoundVars]?

Continuations are either empty (ending the message sequence) or consist of further actions, next states,
or inline choices:

Continuation::= /* epsilon */

 | -> StateId [BoundVars] Continuation

 | -> Action Continuation

 | -> (ActionSequence or … or ActionSequence) Continuation

ActionSequence::= Action (-> Action)*

The action sequences in an inline choice must start with the same kind (all sends or all receives). Final
states in a contract are those containing no message sequences.

2.1.3. Subroutine states

To reuse descriptions of finite message exchanges at several points in a contract, we allow a continuation
to use a state as a sub routine. A state mentioned in a message sequence is a subroutine state, if it isn’t
followed by a semicolon. Here’s an example contract using a subroutine state.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 9

 state Start: Process -> Start;

 state Process: one {

 M1? -> (A1! or A2!)

 M2? -> (A3! or A4!)

 }

In the Start state, we first accept message sequences according to subroutine state “Process”, then the
protocol repeats to the Start state. The syntax of the Start state uses the short hand introduced in section
2.1.6.
A message sequence with a subroutine state evolves according to the named state. When all messages
exchanges are exhausted according to that state, the contract evolves according to the remaining
continuation. We require the named subroutine state to describe message exchanges of only finite length.
Contracts not satisfying this restriction are considered ill-formed.

2.1.4. Joins

The semantics of subroutine states provide a way to express joins in the contracts. A join is like a barrier,
waiting for a set of possible traces to end before resuming the continuation of the contract. If a subroutine
state contains parallel message sequences, then the continuation after the subroutine state, starts only
after those message sequences have all been exhausted.

2.1.5. Endpoint states

When referring to an endpoint in types such as C.Imp or C.Exp, one has the ability to specify the channel
state explicitly:

TypeRef::= ...

 | TypeRef : Id

The states of a contract are turned into nested types of the contract and are referenced thus just like
ordinary types. The form C.Exp:S specifies that the endpoint is in state S of contract C. Without the colon
qualifier, endpoints are assumed to be in the start state. Note however, that these states are only required
at abstraction boundaries, e.g., on method parameters and results, and on TRef instances. Local
variables never need such state annotations, since the state is inferred locally.

2.1.6. Shorthands

States consisting of a single message sequence can be written without kind and braces, and the
message sequence doesn’t have to start with an action.

state StateId [BoundVars]: Action Continuation ;

state StateId [BoundVars]: StateId [BoundVars] Continuation ;

2.1.7. Contract extensions

Contracts can be defined as extensions of existing contracts. Contract extensions are non-symmetric with
respect to the importing and exporting sides of a channel. The exporting side of a contract extension is
compatible with the exporting side of the base contract. The importing side of the extension is unrelated
to the importing side of the base contract.
A contract extension can define new messages, new states, and extend existing states. The message
sequences in new states are unrestricted. An existing state is extended by using the override keyword.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 10

 contract C {

 message A();

 message B();

 state Start: one {

 A! -> End;

 }

 state End: ;

 }

 contract D : C {

 message E();

 message F();

 message G();

 override state Start: one {

 E! -> Other;

 }

 state Other: one {

 F? -> G! -> Other;

 }

 }

Contract D extends contract C by adding 3 new messages (E, F, G) and a new state (Other). The existing
Start state is extended by adding a new message sequence guarded by the send of the new message E.
The following rules apply to state overriding.

Rule 1: The overridden state in the base contract must be a choice (one) state.

Rule 2: Every message sequence in the overridden state in the base contract starts with a send.

Rule 3: The overriding state must be a choice (one) state.

Rule 4: Every message sequence in the overriding state starts with a send of a new message
(declared in the contract extension).

Rule 5: Upcasts must respect the protocol state. Thus, an upcast is only possible if the state of the
endpoint is an overridden state present in the base contract that is being cast to.

Rule 6: Downcasts must respect the protocol state. Downcasts don’t change the protocol state.

The rational for these rules is that the channel interaction must occur at a contract level agreed upon by
both the importing and exporting sides. This common level is defined by the view of the exporting side
and the fact that the importing side cannot drive the protocol from a base state to a state of the derived
contract. Transition from a base state to a derived contract state is performed by a send by the exporting
side, which thereby signals to the importing side which level it is serving.
The common usage scenario for sub contracts is that there is some common base contract C for a set of
services. But each service may add additional functionality in the form of a subcontract. Clients connect to
services via a general mechanism that expects a C.Exp to be connected to the service. The service may
downcast the endpoint to see if it can serve a more refined service and if so, reply with a message (such
as E in the example above) to transition the protocol into a state of the derived contract that enables the
additional functionality.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 11

2.2. Channel Related Types

2.2.1. Message tags

Each contract C contains an enumeration C.Tags with elements corresponding to each declared message in
the contract. These are used for implementation purposes and the Sing# user doesn’t usually need to interact
with message tags explicitly.

2.2.2. Endpoints

For each contract C, there are implicit nested types C.Exp and C.Imp representing the two types of
endpoints of a channel adhering to contract C. Endpoints contain methods for sending and receiving
particular messages. For each message M(T1 x1, … Tn xn), there are methods:

 public void SendM(T1 x1, … Tn xn);

 public void RecvM(out T1 x1, … out Tn xn);

SendM is non-blocking, and RecvM is blocking. RecvM blocks until a message is available and fails if a
message other than M is at the head of the queue.
The receive methods can be used when it is known what the next message type is a-priori. Otherwise, a
switch receive statement is more appropriate.

2.2.3. Endpoint Sets

If a thread wants to handle an unbounded number of endpoints of a certain type, it can use an endpoint
set. Endpoint sets support two basic operations: 1) an endpoint can be added to the set explicitly, via the
Add method, and 2) switch receive can select a message from any endpoint in a given set. See the
switch receive section 2.4.1 below. The signature of endpoint sets is as follows.

 public class ESet<EP> where EP : Endpoint {

 public void Add([Claims] EP endpoint);

 }

The endpoint type parameter must be instantiated to the particular contract and Imp or Exp endpoint type as
well as the state the endpoint is in, e.g., ESet< MyContract.Imp:Ready >.

2.2.4. Endpoint Maps

Endpoint maps are similar to endpoint sets, but in addition to holding endpoints, the map associates with
each endpoint an arbitrary data item that is recovered when a message is received on such an endpoint.
See section 2.4.1 for more details. The signature of endpoint maps is as follows.

 public class EMap<EP, D> where EP : Endpoint {

 public void Add([Claims] EP endpoint, D data);

 }

In addition to the endpoint type, EMaps are also instantiated with the type of data that is held for each endpoint.
E.g., EMap< MyContract.Imp:Ready, int > associates an integer with each endpoint in the set.

2.2.5. Contracts

Each contract C is represented as a type. There are never instances of such contract types, but they
encapsulate a static method for creating new channels of a given contract:

 public static void NewChannel(out C.Imp! imp, out C.Exp! exp);

The NewChannel method returns the two endpoints of the new channel. The channel starts out in the
start state of the channel (the first listed state). The ! type suffix states that the resulting values are non-
null. The non-null types are a general feature inherited from Spec#. The typical creation sequence for a
channel is as follows:

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 12

 C.Imp! imp;

 C.Exp! exp;

 C.NewChannel(out imp, out exp);

There exists another overload for NewChannel that also takes the initial channel state as an argument.

 public static void NewChannel(out C.Imp! imp, out C.Exp! exp, int initialState);

The typical usage for creating a channel in state S of a contract C is:

 C.Imp! imp;

 C.Exp! exp;

 C.NewChannel(out imp, out exp, C.S.Value);

2.2.6. States

Each state S of a contract C is turned into a nested class S.C with abstract methods encoding the state
transitions. These methods only serve as an encoding of the contract for the model checker. The only useful
aspect of states for the programmer is their use in specifying what state a particular endpoint is in on
parameters, results, and on TRef, ESet and EMap instantiations. The following syntax is used in each of these
cases:

 C.Imp:Ready Foo(D.Exp:Start exp) { … }

 TRef<C.Imp:Ready>

 ESet<C.Imp:Ready>

 EMap<C.Imp:Ready>

Method Foo states that the argument endpoint exp must be in the Start state, and that the result endpoint is in
the Ready state. The instantiations state that the associated endpoints are in the Ready state.

Another useful feature of states is to use them in runtime checking to determine what state a particular endpoint
is in. The following method has a precondition that requires the endpoint to be in state Ready or Waiting.

 void M(D.Exp exp)

 requires exp.InState(D.Ready.Value) || exp.InState(D.Waiting.Value);

 { .. }

The InState method takes an integer argument that encodes the state of the endpoint. Each state in a
contract has a constant associated with it called Value.

2.3. Rep types

Rep types are structs that are suitable for allocating in the exchange heap. The restriction on such structs is that
their fields have types that are themselves exchangeable over channels, such as primitive scalars, enums, or
pointers into ExHeap. Rep types cannot contain endpoints however.

Rep types are declared like structs, but with the rep prefix. The following is an example of a rep struct with two
integer fields and a pointer to a char vector in the exchange heap.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 13

 using Microsoft.SingSharp;

 public rep struct NamedPoint : ITracked {

 public int x;

 public int y;

 public char[] in ExHeap name;

 }

The ITracked marker interface is required here because the struct contains objects that need to be
tracked themselves, in this case the char[] name.

2.3.1. Pointer-free structs

Network header parsing is made easier if we allow a sequence of bytes to be interpreted as a particular
structure. In order to support this safely, Sing# introduces the notion of a pointer-free struct. Fields of pointer-
free structs contain only fields with pointer-free types. Pointer-free types are all the primitive numeric types as
well as Booleans and characters, as well as pointer-free structs.

Pointer-free structs are declared like ordinary structs but with the qualifier pointerfree. They form a special sub-
category of rep types, but they are useful irrespective of channels.

 pointerfree struct S {

 int x;

 float y;

 R r;

 }

 pointerfree struct R {

 int u;

 char c;

 }

Structs S and R are both valid pointer-free structs. Note that S is allowed to contain a struct field of type R, since
R is declared to be pointer-free itself. Pointer-free structs can be used wherever ordinary structs are acceptable.
But their utility comes in conjunction with overlays (Section 2.4.2).

2.3.2. Struct inheritance

Rep structs can inherit from other rep structs. The fields of a parent rep struct are visible to the sub struct under
the same rules as for classes. It is possible to call methods in base structs using the base syntax. Virtual
methods can be defined as well. However, these are only useful when used in conjunction with interfaces.
Struct inheritance allows one to safely cast a pointer S* in ExHeap to T* in ExHeap, provided that struct S
inherits from T. Similarly, one can pass by reference a struct S where a ref T parameter is expected. There is no
conversion from S to T on values themselves.

2.4. Statements

2.4.1. Switch receive

In order to wait for messages or message patterns on a variety of channels, Sing# supports a switch receive
statement which is commonly known as select-receive. We chose the alternative keywords in order to avoid
making the common word “select” a new statement level keyword. The syntax is:

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 14

 Statement ::= ...

 | switch receive { ReceiveCase* }

 ReceiveCase ::= case ReceiveConjunct (&& ReceiveConjunct)* [in Id [~> Id]]:

CaseBlock

 | case timeout: CaseBlock

 | case unsatisfiable: CaseBlock

 ReceiveConjunct ::= Id . M ([Type1] Id1 … [Typen] Idn)

The normal receive case consists of message receive conjuncts, where each receive conjunct consists of a
local variable Id referring to a non-null endpoint, a message M, and a sequence of variables that are bound to
the arguments of the message in the corresponding CaseBlock. The optional type declarations preceding the
message argument variables permit the programmer to repeat the declared message argument types.

Within a ReceiveCase, the endpoint identifiers among the conjuncts must be distinct, ie., it is not allowed to
receive two messages on the same channel in a single ReceiveCase. The semantics of a switch receive is that
the thread blocks until one of the cases is enabled. A case consisting of receive conjuncts is enabled when all
the conjuncts are satisfied. If so, the messages are received and their arguments bound to the variable
identifiers, which are then available in the CaseBlock.

If present, the special case timeout fires when no message receive conjuncts are enabled. Currently, the
timeout span is 0ms, but we should support non-zero timeouts in the future. The unsatisfiable case is only
enabled on an error condition, i.e., when no other case can ever be taken (e.g., when all queues contain a
message, but no pattern is statisfied).

The optional suffix in followed by an endpoint set makes the last ReceiveConjunct into a receive from an
endpoint set (ESet). In that case, the endpoint Id of the ReceiveConjunct acts as a pattern variable and is bound
to the actual endpoint in the set from which the message was received. Note that if the branch is taken, the
endpoint is removed from the set.

The extra suffix ~> followed by a variable pattern is used on endpoint maps (EMap) where the variable binds
the data associated with the endpoint on which the message was received. Again, the endpoint is removed from
the map if the branch is taken.

2.4.1.1. Channel closed pattern

The special message ChannelClosed can be used to recognize if a channel has been closed by its peer. It is
only satisfied if the channel is closed and no more messages are outstanding. For example:

 switch receive

 {

 case a.ChannelClosed():

 Console.WriteLine(“Channel a is now closed”);

 break;

 }

2.4.2. Overlays

In order to facilitate parsing and constructing network packet headers, Sing# allows viewing a sequence of bytes
(or any sequence of pointer-free data) as a pointer-free structure. For this purpose, a new kind of local
declaration is introduced:

 LocalDecl ::= ...

 | ref TypeReference Id = ref Expression [Expression] ;

TyperReference must refer to a pointerf-free struct S. The declaration introduces Id as a new local
variable of type S & (or managed reference to S). In C, the equivalent statement would be

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 15

 S* s = (S*)&e1[e2];

The compiler checks that e1 is an array of pointer-free elements and e2 is a numerical index. At runtime,
the code first checks that e1[e2] is a valid array element and then checks that array e1 is large enough
to hold a structure S at index e1 without overflowing the array. The exact check performed is

 if ((e1.Length – e2) * sizeof(e1.ElementType) < sizeof(S)) {

 throw new ArgumentOutOfRangeException();

 }

Once a new struct reference has been initialized, it can be used in the same way as a reference
parameter would be used. Reading and writing parts of the entire struct reads and writes the
corresponding bytes of the underlying array. Here’s an example:

 pointerfree struct S {

 int x;

 int y;

 }

 int Test(int[] a, int index) {

 ref S s = ref a[index];

 return s.y;

 }

 static void Main() {

 int[] a = new int[]{0,1,2,3,4,5,6,7};

 assert(Test(a, 5) == 6);

 }

2.5. Ownership tracking

The Sing# compiler tracks ownership of resources that are allocated explicitly, such as channel endpoints, rep
structs in the exchangeable heap, as well as data structures such as ESets and EMaps that contains such
resources. The compiler enforces statically that tracked resources are

1. Properly deleted when no longer used

2. Not used when deleted or ownership has been delegated,

3. Ownership delegation is correctly implemented according to the parameter/return specifications

We refer to objects of the above types as tracked types. A type is tracked if either a) it derives from the ITracked
interface, or b) it is allocated in an explicitly managed heap, such as the exchange heap
Microsoft.Singularity.Channels.ExHeap.

2.5.1. Fields of tracked types

Access to fields of tracked structs or tracked objects is governed by the type of the field. There are two cases. If
the field type is non-tracked, then reading and writing the field is unrestricted. If the field type is itself tracked,
then access to the field is only permitted in contexts where the enclosing struct/object is exposed. An
object/struct pointer can be exposed using an expose block.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 16

 expose (e)

 {

 … access to tracked fields of e granted here

 }

The mental model for expose blocks is that the ownership invariant of the target of the expose holds on entry
and exit of the block. Within the block the ownership invariants of the fields can be temporarily violated and the
compiler makes sure that by the end of the block, they are reestablished.

The following example deals with a linear list structure List that contains an integer and a next field to the tail of
the list. SplitTail

 ListElem* in ExHeap SplitTail(ListElem* in ExHeap list)

 {

 expose (list)

 {

 ListElem* in ExHeap result = list.next;

 List.next = null;

 return result;

 }

 }

 rep struct ListElem : ITracked {

 int x;

 ListElem* in ExHeap next;

 }

2.6. Non-null types

Whether a pointer may be null or is definitely not null is a very common specification. To make it easy to
specify that pointers are non-null, Spec# and Sing# provide non-null types. For any reference type T, the
type T! denotes a reference to a T that is definitely non-null. Such non-null types can be used wherever
types occur with a few exceptions.
The type checker ensures that when a context expects a non-null value, the program actually supplies
one. For example, when passing a possibly null value as the argument to a method whose parameter has
a non-null type, the checker will complain.

2.6.1. Fields of non-null type

When non-null types are used for fields, they act as object invariants. Reading such fields should always
provide a non-null value and writing such fields can only be done with non-null values. In order to make such
guarantees, the checker must ensure that all non-null declared fields of an object are initialized before any code
could read them and observe the null value from the default initialization.

The compiler enforces the initialization of fields in one of two ways, depending on whether the constructor is
delayed or non-delayed.

2.6.1.1. Delayed constructors

A delayed constructor treats this as a delayed reference, meaning that the constructor is only allowed to
initialize the object pointed to by this, but does not actually read fields of the object. We call the this parameter
of a delayed method a delayed reference. Delayed references can only be used to initialize fields of the delayed
reference, or they can be stored into other objects that are themselves delayed. If a delayed reference needs to
be passed to another method (as a explicit parameter or as this), then the method signature must guarantee

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 17

that it treats the parameter as delayed by having the [Microsoft.Contracts.Delayed] attribute on the parameter
(method for this). Thus, base constructors called from a delayed constructor must themselves be delayed.

By default, the compiler assumes constructors are delayed. To override this default, add the attribute
[Microsoft.Contracts.NotDelayed] on the constructor. This is useful if the constructor does non-trivial
computations using the fields of the object being initialized. Here’s an example of a delayed constructor.

 class C {

 string! name;

 // A delayed constructor (default)

 public C(string! n) {

 this.name = n;

 }

 }

For delayed constructors, the compiler enforces that all non-null fields are initialized by the end of the
constructor. This is sufficient, since the base constructor called (implicitly or explicitly) by a delayed constructor
must also be delayed, thereby guaranteeing that fields will not be read (via virtual calls). Most constructors in
programs are delayed. This property allows one to guarantee proper initialization of circular structures, meaning
that all pointers on a cycle are actually non-null as in the next example:

 class List {

 Node! head;

 public List() {

 this.head = new Node(this);

 }

 }

 class Node {

 List! list;

 Node! prev;

 Node! next;

 public Node([Delayed] List! list) {

 this.list = list;

 this.prev = this;

 this.next = this;

 }

}

The List constructor above initializes a field head to point to the initial sentinel of a doubly linked list. The
List nodes themselves contain a pointer back to the list as well as prev and next pointers. As the
example shows, we are able to declare all these fields with non-null types and the type checker
guarantees that these fields are indeed initialized prior to reading them. Note that when the Node
constructor is called with the List argument, the list itself is not properly initialized yet (the head field has
yet to be assigned). But that is okay, since the Node constructor treats the List parameter as delayed
(using the attribute [Delayed]), guaranteeing that it won’t yet observe any invariants about the list.

2.6.1.2. Non-delayed constructors

Some constructors do more than just initialize fields. They require calling other methods on the object being
constructed that require reading of the fields. Such non-delayed constructors must be annotated with the
attribute [Microsoft.Contracts.NotDelayed]. In non-delayed constructors, non-null declared fields
must be initialized prior to the (implicit or explicit) base constructor call. The base constructor call demarcates
the end of non-null declared field initialization. After that call, all non-null declared fields are properly initialized.

In C#, the base constructor call appears always at the beginning of the constructor (often implicitly). This makes
it difficult to initialize fields that depend on constructor arguments. In Spec#/Sing#, constructors can call the base
constructor explicitly within the body of the method after initializing the non-null declared fields.

S I N G U L A R I T Y I N T R O D U C T I O N T O S I N G #

Copyright © Microsoft Corporation. All Rights Reserved. 18

 class C {

 string! name;

 public C(string! n) {

 this.name = n;

 base(); // explicit base call after the non-null field „name‟ is initialized

 }

 }

