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Application Binary Interface 

Design and implementation of the interface between processes 
and the Singularity kernel 

This design note captures the details of the interface between processes and the kernel in Singularity.  

It describes both functional and structural interfaces. 

1. Design Goals 

Singularity attempts to define a very strong, versioned binary interface between process code and the 

Singularity kernel.  The construction and factory of the Singularity ABI has four important design 

goals: 

 Enable separate GC domains for each process and for the kernel. 

 Enable separate runtimes for each process and for the kernel. 

 Enable independent versioning of processes from the kernel. 

 Enable strong isolation of processes. 

Recognizing that no class library has ever successfully been versioned independently from it 

applications1, the Singularity ABI is a functional interface.  In C#, Singularity ABI is exposed as a 

collection of static methods, never as instance methods. 

2. ABI Description 

The Singularity ABI includes functions to create and manipulate threads within the calling process, 

create and use thread synchronization objects, activate child processes, create and manipulate message 

content, send and receive messages via channels, securely determining the identity of another process 

accessed through a channel, allocate and free pages used for GC memory, grow and shrink thread 

stack segments, access process parameters, and terminate the calling process when it completes. 

                                                      
 
1 Consider the change required to move a program from MFC 4.2 to MFC 7.0.  Even though each version of MFC is 

packaged as a DLL, a program must be ported from one version of MFC to the next.  While any library upgrade can 

require a port, class libraries are especially problematic because object-oriented programming practices, such as 

inheritance, introduce extremely intricate implementation dependencies between a program and its class library. 
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Two design points of the ABI are extremely important in establishing trust and security in Singularity.  

First, none of the ABI functions modify the state of other processes.  The impact of ABI functions 

is limited to the calling process and the kernels state related to the calling process2.  This scoping of 

ABI functions isolates the impact of a process to itself, its interaction with the kernel, and the set of 

processes to which it communicates through channels.  A parent process constrains the reach of a 

child process by limiting the channels accessible to the child process.  For example, in hosting 

scenarios, a parent process can prevent an untrusted child process (an extension) from communicating 

with all other processes. 

Second, the ABI interface between a process and the kernel cannot be intercepted or altered 

without explicit approval of the process’ author.  This system guarantee keeps a parent process 

from inadvertently or intentionally altering the semantics of the ABI.  Thereby the OS guarantees a 

dependable execution environment for the child process.  This guarantee also prevents an untrusted 

parent process from snooping on private communication between the child process and the kernel.   

The Singularity kernel provides a base for establishing trust and dependability.  By limiting the scope 

of the ABI to the state of the calling process and guaranteeing integrity of the ABI, Singularity 

establishes a trusted isolation boundary between parent and child process.  The Singularity ABI 

enforces a model that allows the parent process to limit a child’s access to all additional software 

services (accessed through channels).  At the same time, the Singularity ABI gives a child process the 

ability to identify the providers of all software services (accessed through channels) and limit its use of 

services based on its trust policies.   

2.1. Services 

2.1.1. DebugService 

The DebugService provides user code with access to the kernel debugger.  Eventually the 

implementation of this ABI will be replaced with access to any debugger currently attached to this 

process. 

Break 

PollAndBreak 

Print 

WalkStack 

2.1.2. DeviceService 

The DeviceService provides the trusted runtime with access to hardware resources.  For the most part, 

the trusted runtime code which wraps DMA memory, and I/O ports, and interrupt lines in access 

classes which are then provide to user code. 

                                                      
 
2 While a process can communicate with another via a channel, it cannot directly change the state of the target 

process.  A message send ABI moves a message from sender’s state into the channel.  The message enters the 

receiver’s state only when it explicitly invokes a message receive ABI. 
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GetIoDmaRange 

GetIoIrqRange 

GetIoMemoryRange 

GetIoPortRange 

GetIoRangeCount 

GetIrqCount 

GetPciConfig 

GetPnpSignature 

2.1.3. EndpointCore 

The EndpointCore provides trusted runtime code with access to the kernel messaging primitives. 

Allocate 

Connect 

Free 

TransferBlockOwnership 

TransferContentOwnership 

2.1.4. PageTableService 

The PageTableService provides trusted runtime garbage collectors (GCs) with access to raw memory 

pages. 

Allocate 

AllocateBelow 

AllocateExtend 

Free 

GetPageCount 

GetPageTable 

GetProcessTag 

Query 

2.1.5. ProcessHandle 

The ProcessHandle provides user code with access to child processes.   

Create 

Dispose 

GetExitCode 

GetProcessId 

Join 

Start 

Terminate 

2.1.6. ProcessService 

The ProcessService provides user code with access to process activation information. 
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GetCurrentProcessId 

GetCycleCount 

GetCyclesPerSecond 

GetNamespaceEndpoint 

GetStartupArg 

GetStartupArgCount 

GetStartupEndpoint 

GetStartupEndpointCount 

GetTracingHeaders 

GetUpTime 

Terminate 

2.1.7. CommunicationHeapService 

The CommunicationHeapService provides the trusted runtime with access to the shared communication 

heap. 

Allocate 

Free 

GetData 

GetSize 

GetType 

SetOwnerProcessId 

SetType 

Share 

Split 

2.1.8. StackService 

The StackService provides trusted runtime code with access to linked stack segments. 

GetUnlinkStackRange 

LinkStack 

2.2. Threads 

Thread operations affect the state of the calling process only.  They cannot be used, for example, to 

create a thread in a target process.   

2.2.1. AutoResetEventHandle 

The AutoResetEventHandle provides user code with a thread synchronization object for notifying a 

waiting thread that an event has occurred. 

Create 

Dispose 

Reset 

Set 

2.2.2.  InterruptHandle 

The InterruptHandle provides user code with a thread synchronization object that is signaled by 

incoming interrupts. 
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Ack 

Create 

Dispose 

Wait 

2.2.3.  ManualResetEventHandle 

The ManualResetEventHandle provides user code with a thread synchronization object to notify one or 

more waiting threads that an event has occurred. 

Create 

Dispose 

Reset 

Set 

2.2.4.  MutexHandle 

The MutexHandle provides user code with a thread synchronization object for serializing access to a 

shared resource. 

Create 

Dispose 

Release 

2.2.5.  SyncHandle 

The SyncHandle provides user code with a mechanism for blocking on one or more thread 

synchronization objects. 

WaitAny 

WaitOne 

2.2.6.  ThreadHandle 

The ThreadHandle provides user code with access to creating, joining, and scheduling threads in the 

same process. 

Create 

CurrentThread 

Dispose 

GetExecutionTime 

GetThreadLocalValue 

GetThreadState 

Join 

SetThreadLocalValue 

Sleep 

SpinWait 

Start 

Yield 

3. Process Construction 

A Singularity process is constructed from three types of assemblies: the application assemblies, class 

library assemblies, and the Runtime assemblies.  The application and class library assembles must be 

expressed as type safe MSIL.  The Runtime assemblies are part of the Singularity trusted computing 

base (TCB), and contain unsafe, but trusted, MSIL. 
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Application 

Assemblies 

(Safe MSIL)

Class Libraries

(Safe MSIL)

Runtime & GC 

(Trusted MSIL)
GeneratorVerified Native X86 

Image

 

After verification, the process image generator combines application and class library assemblies with 

Runtime assemblies.  The generated image contains native x86 instructions and accompanying 

metadata used by the runtime, such as VTables, GC structures, and exception structures.   

For the spring 2005 release, Singularity native images are generated as part of the build process using 

Bartok and the Microsoft linker (link.exe).  In future versions of Singularity, Bartok will run on the 

target computer and link.exe will be replaced with a managed code linker. 

4. Implementing an ABI 

To implement an ABI, the developer must edit four source files: an ABI version specific C# interface 

file3, an ABI version specific trusted process code file4, an ABI version specific kernel code file5, and 

the kernel implementation file6.  A fifth file, an ABI version specific PE module definition file7 is 

created automatically as part of the build process.  

4.1. The ABI C# Interface 

The ABI C# interface file declares the type information relative to the ABI.  An Import Link Library 

(.ill) assembly is created from the C# interface file using csic.exe.  User programs compile against 

the import assembly to prevent them from creating unexpected implementation dependencies and to 

prevent them from accessing the implementation details of the ABI. 

abi.v1.csi : Interfaces/Singularity.V1/DebugService.csi:

namespace Microsoft.Singularity.V1.Services

{

public struct DebugService

{

public static void Print(ulong value);

}

}

 

4.2. The ABI Trusted Process Code 

The ABI trusted process code file contains any wrapper code or implementation needed for the ABI 

that must run in the process.  In most cases, the ABI trusted process code declares that the ABI is an 

external function which must be resolved a link time.  The ABI trusted process code typically also 

declares that the ABI marks the boundary between the kernel and process GC domains and that the 

                                                      
 
3 Referred to hereafter in examples as abi.v1.csi. 
4 Referred to hereafter in examples as abi.v1.cs. 
5 Referred to hereafter in examples as abicod.v1.cs. 
6 Referred to hereafter in examples as kernel.cs. 
7 Referred to hereafter in examples as abi.v1.def. 
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ABI may be accessed by trusted runtime code.  The ABI trusted process code runs within the process 

GC domain. 

abi.v1.cs : Libraries/Singularity.V1/DebugService.cs:

namespace Microsoft.Singularity.V1.Services

{

public struct DebugService

{

[AccessedByRuntime]

[OutsideGCDomain]

[MethodImplAttribute(MethodImplOptions.InternalCall)]

public static extern void Print(ulong value);

}

}

 

4.3. The ABI Kernel Code 

The ABI kernel code file contains the code invoked in the kernel when the ABI is called.  While the 

ABI kernel code may contain the entire implementation of the ABI, it is more often the case that the 

ABI kernel code wraps lower level kernel implementation code and handles impedance mismatch 

between later ABI versions on new version of the kernel.  The ABI kernel code runs in the kernel GC 

domain and can access kernel data structures as needed. 

abicod.v1.cs : Kernel/Singularity/V1/Services/DebugService.cs:

namespace Microsoft.Singularity.V1.Services

{

public struct DebugService

{

[AccessedByRuntime]

public static void Print(ulong value)

{

DebugStub.Print(Thread.GetCurrentProcess(), value);

}

}

}

 

4.4. The Kernel Implementation 

The kernel implementation files contain the most recent implementation of kernel functionality 

exposed via ABIs.  As new versions of the kernel and operating system are produced, the kernel 

implementation will evolve.  To increase engineering flexibility, impedance mismatches between a 

specific version of an ABI and the kernel implementation of the underlying objects should be resolved 

in the ABI kernel code.  Where possible, versioning details should not appear in the kernel 

implementation code. 

kernel.cs : Kernel/Singularity/DebugStub.cs:

namespace Microsoft.Singularity

{

public struct DebugStub

{

public static void Print(Process process, ulong value)

{

... 

}

}

}
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4.5. The ABI PE Module Definition 

References from process code to kernel code are resolved at load time using the PE binary 

import/export mechanism.  The kernel native binary exports entry points for all versions of ABIs 

currently supported.  Process native binaries import entry points for the versions of ABIs against 

which it was built.  The PE module definition files are currently generated automatically as part of the 

kernel build. 

abi.v1.def : Kernel/obj/debug/singularity.V1.def:

EXPORTS

?g_Print@Struct_Microsoft_Singularity_V1_Services_DebugService@@SIXI@Z

 

5. Building the ABI 

5.1. Constructing the OS Kernel 

abicod.v1.cs
trusted C#

csc

kernel.exe
trusted MSIL

bartok

kernel.obj
trusted x86

link

kernel.x86
trusted x86

abi.v1.def
exports

kernel.cs
trusted C#

abicod.v2.cs
trusted c#

native.lib
trusted x86

abi.v2.def
exports
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5.2. Constructing Assemblies and Libraries for an ABI 

abi.v1.csi
C# interface

csic

abi.v1.ill
import MSIL

abi.v1.cs
trusted C#

csc

abi.v1.dll
trusted MSIL

abi.v1.def
exports

lib

abi.v1.lib
import library

 

5.3. Constructing Assemblies for a Runtime 

runtime.cs
trusted C#

csic

runtime.dll
trusted MSIL

abi.v1.ill
import MSIL

csic

runtime.ill
Import MSIL

 

5.4. Constructing a Class Library Assembly 

mscorlib.cs
safe C#

csc

mscorlib.dll
safe MSIL

abi.v1.ill
import MSIL

runtime.ill
import MSIL
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5.5. Constructing a Process 

program.sg
safe Spec#

sgc

program.dll
safe MSIL

bartok

program.obj
trusted x86

link

program.x86
trusted x86

kernel.v2.exe
trusted x86

abi.v1.lib
import library

abi.v1.dll
trusted MSIL

abi.v1.ill
import MSIL

runtime.ill
import MSIL

loader

process
trusted x86

runtime.dll
trusted MSIL

Developer’s Computer

User’s Computer

mscorlib.dll
safe MSIL

mscorlib.dll
safe MSIL

 

6. Threads 

All Singularity threads are kernel threads.  Threads start life in the kernel.  The thread object is 

encapsulated in the Kernel/System.Threading.Thread class.  When not scheduled, the threads context 

is saved to the Kernel/System.Threading.X86ThreadContext structure. 

6.1. Processor and Thread Context 

Singularity is intended to support multiple processors.  Each physical processor is represented by a 

processor object of class Microsoft.Singularity.Processor.  In addition, each processor has an 

immovable processor context structure of type Microsoft.Singularity.X86.ProcessorContext pointed 

to by the processor’s fs register.   
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Native code uses offsets on the fs register to the ProcessorContext structure to quickly access 

processor local storage.  As related to this design note the format of ProcessorContext structure is as 

follows: 

namespace Microsoft.Singularity.X86  

{ 

    [StructLayout(LayoutKind.Sequential)] 

    internal struct ProcessorContext 

    { 

        ... 

        [AccessedByRuntime] internal unsafe ThreadContext *threadContext; 

        ... 

        [AccessedByRuntime] internal UIntPtr schedulingStackBegin; 

        [AccessedByRuntime] internal UIntPtr schedulingStackLimit; 

        [AccessedByRuntime] internal UIntPtr interruptStackBegin; 

        [AccessedByRuntime] internal UIntPtr interruptStackLimit; 

        [AccessedByRuntime] internal UIntPtr exceptionStackBegin; 

        [AccessedByRuntime] internal UIntPtr exceptionStackLimit; 

        ... 

    } 

} 

Among other items, the ProcessorContext structure points to the ThreadContext structure of the thread 

currently scheduled on that processor.  The kernel maintains one ThreadContext structure for each 

thread, which holds the thread’s registers when it is not scheduled. 

As related to this design note, the format of the ThreadContext structure is as follows: 

namespace Microsoft.Singularity.X86  

{ 

    using System.GCs.CallStack; 

 

    [StructLayout(LayoutKind.Sequential)] 

    internal struct ThreadContext 

    { 

        ... 

        [AccessedByRuntime] internal UIntPtr stackBegin; 

        [AccessedByRuntime] internal UIntPtr stackLimit; 

        ... 

#if SINGULARITY_KERNEL 

        [AccessedByRuntime] private unsafe Thread *_thread; 

        [AccessedByRuntime] internal UIntPtr processThread; 

        [AccessedByRuntime] internal unsafe TransitionRecord * asmStackMarkers; 

        [AccessedByRuntime] internal unsafe TransitionRecord * processMarkers; 

#elif SINGULARITY_PROCESS 

        [AccessedByRuntime] internal UIntPtr kernelThread; 

        [AccessedByRuntime] private unsafe Thread *_thread; 

        [AccessedByRuntime] internal unsafe TransitionRecord * kernelMarkers; 

        [AccessedByRuntime] internal unsafe TransitionRecord * asmStackMarkers; 

#endif 

        ... 

    } 

} 

The _thread field of the ThreadContext structure contains a GC managed reference to the System-

.Threading.Thread object for this thread, not a pointer to a managed reference as is suggested by the 

syntax.  Unfortunately, C# has no syntax to allow a managed reference to be embedded in a structure.  

Managed code should use the thread property to access this value.  Native code can use the field 
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directly.  The _thread field is actually aliased to two separate objects, one for kernel code and one for 

process code.  The former is managed by the kernel’s GC, the latter is managed by the process’ GC. 

To load the stackLimit for the current thread, Bartok emits the following code: 

mov eax,fs:[Struct_Microsoft_Singularity_X86_ProcessorContext._threadContext] 

mov eax,[eax].Struct_Microsoft_Singularity_X86_ThreadContext._stackLimit 

The ProcessorContext and ThreadContext structures are allocated either from the kernel page manager 

or from the system shared heap. 

6.2. Calling Convention 

On the X86, Singularity adopts the __fastcall calling convention.  Key features of __fastcall are: 

 Argument passing: The first two 32-bit or smaller arguments are passed in ECX and EDX 

registers; all other arguments are passed right to left. 

 Return values: 32-bit or smaller values are returned in EAX, 64-bit values are returned in 

EDX:EAX, larger values are returned through a pointer passed as an argument. 

 Stack maintenance: Called method pops the arguments from the stack.  

 Callee-saved registers: EBX, EBP, ESP, EDI, ESI.  EAX used for return values and free at 

callee entry.  Any in-use floating pointer registers must be saved by the caller. 

 Stack-chain:  EBP always points to the top of the current method’s stack frame. The 

prologue for every method issues the following sequence of instructions to maintain the 

EBP chain: 

push  ebp 

mov   ebp, esp 

 Stack frame:  A method’s stack frame has the following format: 

          +-----------------------+     /|\ 

          |          ..           |      |   Higher addresses 

          +-----------------------+      | 

          |         arg4          |     

          +-----------------------+        

          |         arg3*         |      *arg1 in ECX, arg2 in EDX. 

          +-----------------------+        

          | return addr in caller |     

          +-----------------------+        

   ebp -> |     previous ebp      | 

          +-----------------------+      | 

          |   stack variables..   |      |   Stack grows downward (toward 0) 

   esp -> +-----------------------+     \|/ 

6.3. Fixed Stacks 

Singularity threads have access to two types of stack.  Fixed stacks are fixed-size stacks allocated on a 

per processor basis.  Linked stacks are allocated on a per-thread basis and consist of one or more 

independently allocated segments.  Linked stack segments are allocated on demand and released as 

soon as they are no longer needed.  Linked stacks allow Singularity to create large numbers of threads 

with low memory overhead. 
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By convention, fixed stacks may be used only when interrupts are disabled in order to avoid potential 

conflicts between multiple thread accessing the same fixed stack.  On the x86, even relatively small 

sequences of code can use fixed stacks as needed because a pair of cli and sti instructions can 

execute in as few as 10 cycles.  In addition, because of the system’s abstract instruction set, Bartok can 

inline these instruction when needed into safe code, whether the code is part of the trusted computing 

base or not. 

Singularity allocates three fixed stacks for each schedulable processor: 

 The Scheduling Stack is used by the scheduler proper or scheduler support routines, 

such as code to determine if a message delivered through a channel will unblock the 

destination thread. 

 The Interrupt Stack is used by the hardware interrupt handler to dispatch interrupts 

from I/O devices and other processors. 

 The Exception Stack is used by the exception handler to dispatch processor exceptions 

such as debug breaks, overflow exceptions, etc. 

Only trusted code may directly change from between fixed and linked stacks or from one fixed stack 

to another.  However, Bartok may inline trusted code into other code when generating the native 

image for a process. 

6.4. Linked Stacks 

Singularity allocates a small stack initial linked stack segment for each thread then allocates and frees 

additional stacks segments on demand.  The image generator inserts special prologues into select 

methods that verify at entry that sufficient stack is available.  If sufficient stack space is unavailable, 

the stack maintenance prologue asks the kernel to allocate an additional stack segment.  Each stack 

segment is denoted by three pointers: stackBase, the highest address of the segment; stackLimit, the 

lowest address of the segment; and ESP, the stack pointer.  The stackBase and stackLimit are stored in 

the ThreadContext structure. 

When a method is invoked, the layout of the current working stack segment is as follows: 

   stackBase -> +-----------------------+ 

                |     previous esp      | 

                +-----------------------+        

                |   previous stackBase  | 

                +-----------------------+        

                |  previous stackLimit  | 

                +-----------------------+        

                |          ..           | 

                +-----------------------+        

                |          ..           | 

                |         args          |     

                +-----------------------+        

         esp -> | return addr in caller |     

                +-----------------------+        

                |          ..           | 

  stackLimit -> +-----------------------+ 

The method prologue emitted by Bartok for the stack check compares the current stack limit with the 

maximum anticipated stack limit.  If the current stack limit is insufficient, the stack check invokes the 

appropriate LinkStackN method.  The cost of the stack check is approximately 5 cycles on the 
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AMD64.  The LinkStackN methods are exported via the DLL export table from the kernel to process 

code.  The value N in the name is the count of bytes of arguments on the stack that must be copied. 

 push ebp ; create EBP chain. 

 mov  ebp, esp ; rest of callee code assumes EBP chain. 

 

 mov  eax, fs:[ProcessorContext8._threadContext] 

 mov  eax, [eax].ThreadContext._stackLimit 

 add  eax, frame_size 

 cmp  eax, esp 

 jge  link  ; run link code if stack will overflow. 

cont: 

 ...  ; function body 

 pop  ebp ; undo EBP chain. 

 ret  N ; callee pops arguments from stack. 

. 

link:  

; Note: move to optimize branch prediction? 

 mov  eax, stack_needed ; load argument for LinkStackN 

 call Class_Microsoft_Singularity_Memory_Stacks::LinkStackN 

 jmp  cont  ; run function body. 

In addition to allocating a new stack segment and creating a new stack frame on the segment, the 

LinkStackN method adjusts the return address in the new frame so that on exit from the method, 

control is transferred to one of the UnlinkStackN methods.  The following figure shows the previous 

stack segment at entry and exit from LinkStackN and the new stack segment on exit from LinkStackN. 

        1) Stack at entry of LinkStackN 

            +-----------------------+ 

old base -> |     previous esp      |   2) Stack on exit from LinkStackN 

            +-----------------------+       +------------------------+ <- base 

            |  previous stackBase   |       |         old esp        | 

            +-----------------------+       +------------------------+        

            |  previous stackLimit  |       |        old base        | 

            +-----------------------+       +------------------------+ 

            |          ..           |       |        old limit       | 

            +-----------------------+       +------------------------+ 

            |          ..           |  ==>  |            ..          | 

            |         args          |   .   |           args         | 

            +-----------------------+   .   +------------------------+ 

            | return addr in caller |   .   | return to UnlinkStackN | 

            +-----------------------+   .   +------------------------+     

 old ebp -> |      caller ebp       |  ==>  |        old ebp         | <- esp & 

            +-----------------------+       +------------------------+    ebp 

 old esp -> | return addr in callee |       |           ..           | 

            +-----------------------+       |           ..           | <- limit 

Bartok need not insert any code for stack unlinking as the number of arguments to be popped is coded 

into each UnlinkStackN method.  The following figure shows the stack segments at the entry of 

UnlinkStackN: 

                                                      
 
8
Struct_Microsoft_Singularity_X86_ProcessorContext and Struct_Microsoft_Singularity_X86-

_ThreadContext have been abbreviated here to make the text easier to read. 
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old base -> +-----------------------+ 

            |     previous esp      |     

            +-----------------------+       +------------------------+ <- base 

            |  previous stackBase   |       |         old esp        | 

            +-----------------------+       +------------------------+        

            |  previous stackLimit  |       |        old base        | 

            +-----------------------+       +------------------------+ 

            |          ..           |       |        old limit       | <- esp 

            +-----------------------+       +------------------------+ 

            |          ..           |       |           ..           | * ebp =  

            |         args          |       |           ..           |   old ebp 

            +-----------------------+       |           ..           | 

            | return addr in caller |       |           ..           |   ecx & 

            +-----------------------+       |           ..           |   edx 

     ebp -> |      caller ebp       |       |           ..           |   are free 

            +-----------------------+       |           ..           | 

 old esp -> | return addr in callee |       |           ..           | 

            +-----------------------+       |           ..           | <- limit 

The following figure shows the stack segment at exit from UnlinkStackN: 

        2) Stack at exit from UnlinkStackN 

 stackBase -> +-----------------------+ 

              |     previous esp      |     

              +-----------------------+     

              |  previous stackBase   |          

              +-----------------------+                 

              |  previous stackLimit  |          

              +-----------------------+          

              |          ..           |          

       ebp -> |          ..           |          

              |          ..           |          

       esp -> |          ..           |          

              +-----------------------+    * eip = return addr in caller   

6.5. Stack Regions 

A given thread may pass back and forth from kernel to process code multiple times during its 

execution.  Singularity must isolate stack frames created by kernel code from stack frames by process 

code in order to allow independent garbage collection and termination of process code.  To isolate 

kernel and process stack frames, Singularity reuses the stack marking mechanism implemented in 

Bartok to isolated managed and unmanaged code on Windows. 
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The transition record contains all of the callee saved registers so that the GC can fix up registers that 

may contain object references before execution leaves the current GC domain.  

namespace System.GCs 

{ 

    internal unsafe class CallStack 

    { 

        [StructLayout(LayoutKind.Sequential)] 

        internal unsafe struct TransitionRecord 

        { 

            internal TransitionRecord *oldTransitionRecord; 

            internal UIntPtr callAddr; 

            internal UIntPtr stackBottom; 

            internal UIntPtr EBX; 

            internal UIntPtr EDI; 

            internal UIntPtr ESI; 

            internal UIntPtr EBP; 

        } 

    } 

} 

Kernel and process code each maintain a linked list of System.GCs.CallStack.TransitionRecord 

structures.  Before transitioning to process code, the kernel creates a TransitionRecord on the stack 

and inserts it at the head of its asmStackMarkers linked list. Likewise before transitioning to kernel 

code, the process creates a TransitionRecord on the stack and inserts it at the head of its 

asmStackMarkers linked list. 

When terminating a process the kernel walks the two lists of TransitionRecord structures and 

modifies the stack so that execution returns through kernel code skipping any stack frames created by 

process code. 

In C#, methods whose code executes outside the current GC domain9 are marked as extern methods 

and tagged with the [OutsideGCDomain] custom attribute to distinguish them from other extern 

methods. 

7. Shared System Heap 

[To be edited by BZill] 

Channels10 provide the primary means of inter-process communication in Singularity. The data which 

can be passed over channels are restricted to exchangeable types11 and are allocated from a special 

heap. This section discusses the design of this special heap, the shared system heap. 

7.1. What makes the shared system heap special? 

1. It is shared among multiple processes. 

2. We need to be able to identify and quickly free all the allocations “owned” by a given 

process (e.g. on process death). 

3. The process “ownership” of a given allocation may change over time. 

                                                      
 
9 For example, kernel code called from a process or process code called from the kernel. 

10 See SDN 5 

11 See SDN 6 
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4. We want to be able to split a given allocation and allow the pieces to go to different 

processes. 

5. We would like to be able to share read-only allocations between multiple processes (this 

would be invisible to the processes in question; to them it should be indistinguishable to 

having their own read-only copy). 

7.2. Corresponding consequences (by number) of being special: 

1. We will need to track process “ownership” of allocations somehow. 

2. A suitably fast way to do this would be to keep a per-process linked-list of allocations 

“owned” by that process. 

3. To quickly change ownership of an allocation, we’ll likely want the above list to be 

doubly-linked (for quick removal of an allocation from the old owner’s list). 

4. This means we can’t keep any heap (or type system) meta-data as part of the allocations 

themselves.  Thus the meta-data must live off to the side. 

5. Now instead of a single owner, we need a means to track multiple owners of a given 

allocation and only free the allocation when all of the owners go away.  One way to do 

this would be to have a list of “other owners” of the allocation (only the allocation itself 

would be shared, each owner would have their own meta-data for the entry). 

7.3. Strawman proposal: 

Each allocation in the heap proper consists of only the bare data bytes. Any sort of type or length 

information is kept in a separate meta-data block off to the side. The runtime accesses the data 

indirectly via the meta-data block (which contains a pointer to the data). The meta-data blocks are on a 

doubly-linked list of such blocks belonging to their owner.  Ownership transfer involves moving a 

block to a different owner’s list. Optionally, the meta-data blocks are also on a separate single or 

doubly-linked ring list of “other owners”. If we assume the number of processes sharing a given 

allocation is small, we should be able to get away with using only a singly-linked list for this and still 

have good performance. 
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7.4. Diagram with circles and arrows: 

 

 
 

 

7.5. A cost/benefit analysis 

In terms of the meta-data per allocation, we’re using two pointers for the doubly-linked per-process 

list, one or two (two shown above) pointers for the “other owners” ring, and a pointer to point to the 

actual data allocation. We may also need a length field. Any meta-data the type system needs to 

describe this data would also be stored in this block. 

7.6. Meanwhile, back in the heap… 

The above strawman only covers the meta-data management, and not the actual allocation and freeing 

of the data regions. We still need an internal representation for the free regions of the heap. 

A complication is that we’re allowing allocated regions to be arbitrarily split at a later date – should 

the split-up pieces return to the free list individually as new smaller regions, or should we wait for all 

the pieces to be freed before returning the single coalesced region back to the free list? The former 

approach has higher memory availability (since unused memory can always be immediately returned 

to service), but at the cost of potentially higher memory fragmentation and/or greater complexity to 

handle eventual coalescing of neighboring free blocks. 

8. Shared System Types 

Singularity implements a simple shared type system to enable global references to type information.  

The shared type system augments, but does not replace, the program type system created by Bartok 

for each process. 

Proc 1 

Proc 2 



S I N G U L A R I T Y   A P P L I C A T I O N  B I N A R Y  I N T E R F A C E  

 

Copyright © Microsoft Corporation.  All Rights Reserved. 19 

Each shared system type is represented by a SystemType structure: 

namespace Microsoft.Singularity.V1.Services 

{ 

    [StructLayout(LayoutKind.Sequential)] 

    public struct SystemType 

    { 

        internal unsafe SystemType * baseType; // Initialized by Kernel. 

        ... 

    } 

} 

The shared system types are meant to be used by the kernel and trusted runtime code only.  By 

exposing system types using pointers to structures, safe application code cannot access them. 

The ABI exposes the following methods for accessing shared system types: 

namespace Microsoft.Singularity.V1.Types 

{ 

    public struct SystemType 

    { 

        public static unsafe SystemType * Register(int strongname); 

        public static unsafe void IsSubtype(SystemType *base, SystemType *type); 

    } 

} 

9. Channels and Endpoints 

The implementation of channels and endpoints is split between the trusted runtime and the kernel.  

The trusted runtime is responsible for all data allocation and manipulation.  The kernel is responsible 

for scheduling and accounting. 
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A channel is realized as two endpoint structures allocated from the shared system heap.  The exact 

structure of each endpoint structure is specific to the channel contract provided by the endpoint.  

However, all endpoints share a common prologue defined by the Endpoint structure: 

namespace Microsoft.Singularity.V1.Channels 

{ 

    [StructLayout(LayoutKind.Sequential)] 

    public struct Endpoint 

    { 

        public unsafe SystemType * type; // Initialized by kernel. 

        public unsafe Endpoint * peer; // Initialized by kernel. 

        ... 

        public unsafe Endpoint * waitList; 

    } 

} 

The kernel exposes the following methods related to channels: 

namespace Microsoft.Singularity.V1.Channels 

{ 

    [StructLayout(LayoutKind.Sequential)] 

    public struct Endpoint 

    { 

        public static unsafe Register(SystemType *contract, 

                                      Endpoint *imp, 

                                      Endpoint *exp); 

        public static unsafe Notify(Endpoint *endpoint); 

        public static unsafe Wait(Endpoint *endpoint); 

        public static unsafe WaitAll(Endpoint *endpointList); 

        public static unsafe Acquire(Endpoint *endpoint, 

                                     Endpoint *container); 

        public static unsafe Release(Endpoint *endpoint, 

                                     Endpoint *container); 

        public static unsafe Unregister(Endpoint *endpoint); 

    } 

} 

Endpoints are allocated from the shared system heap by the trusted runtime.  Once allocated, the two 

endpoints must be registered with the kernel as a channel using the Endpoint.Register ABI.  When 

sending a message, the sender writes the message contents into the receiving endpoint, and then 

notifies the kernel that the message is ready using the Endpoint.Notify ABI.  To wait for an incoming 

message on one endpoint, the receive uses calls the Endpoint.Wait ABI, and then removes the 

message contents from the endpoint structure.  A receiver can wait for multiple channels by creating a 

linked list using the Endpoint.waitList pointers, and then calling the Endpoint.WaitAll ABI. To place 

an endpoint in a message, the sender uses the Endpoint.Release ABI.  The receiver uses the 

EndPoint.Acquire ABI to extract the endpoint from a message.  A process calls the 

Endpoint.Unregister ABI to decommission the endpoint before freeing it from the shared system 

heap. 

 


