
S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 1

Hardware Process Isolation in

Singularity

In which we describe how Singularity can optionally make use
of hardware protection mechanisms to isolate processes

1. Motivation

Support for hardware protection mechanisms were added to Singularity in order to allow traditional hardware-
based process-isolation techniques to be directly compared to the software techniques that had previously been
used exclusively in Singularity.

The “Deconstructing Process Isolation” Technical Report (MSR-TR-2006-43) was the first product of this work,
and presents a set of experiments that compare the costs and benefits of hardware-based isolation to software-
based isolation.

This document aims to document the design changes that were necessary to accommodate hardware
protection. It also documents the current state of the implementation as of June 20

th
, 2006.

Notes on low-level implementation details, or on limitations of the

current implementation, are formatted like this.

whereas

Definitions or general notes are formatted like this.

From the previous version of this document, which acted as a project proposal, we have preserved this
elaboration of one of the primary motivations for exploring alternatives to software protection in the first place:

1.1. Threats to the integrity of software isolation

To date, Singularity has relied exclusively on software techniques to prevent processes from interfering with
each other. Singularity processes are referred to as “SIP”s (Software Isolated Processes) to underscore this
design.

It is only possible for SIPs to operate without the use of hardware protection because SIPs are believed to have
a certain set of properties that ensure their correct operation without hardware oversight:

Singularity

Design Note

29

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 2

 SIPs do not contain privileged instructions that manipulate processor state inappropriately

 SIPs do not reference other process’ heap data

 SIPs manipulate data structures shared with other processes (such as the communication heap and
channel endpoint structures), but preserve their integrity while doing so

 SIPs access certain kernel structures (such as processor and thread state blocks) but preserve their
integrity while doing so

These properties are established and verified by a considerable body of code (not all actually in existence
today), including an MSIL verifier, an MSIL-to-machine-code compiler (Bartok), and the trusted runtime
component of every SIP. In general, software isolation rests on the correct operation of the entire Trusted
Computing Base, which encompasses all these vital components. Reducing the size of the Trusted Computing
Base while preserving the software-only isolation approach is an ongoing subject of research.

Obviously, flaws may exist in the TCB:

 Singularity applications may mistakenly be converted into machine code that contains, or can arrange
to execute, privileged instructions

 Singularity processes may improperly reference memory, either because verification failed to reject
impermissible application code or because the conversion to machine code was incorrect

 The trusted runtime code, which accesses shared system data structures, may be buggy and
inadvertently corrupt those structures

In addition to potential flaws in the TCB, if unreliable hardware should corrupt pointer values or instructions in
memory, and if hardware protections are not being used, nothing would prevent a corrupted process from
affecting data structures of another process, or compromising the integrity of the system by executing privileged
instructions that affect the processor state. Using hardware protection mechanisms may provide a partial
defense against this type of corruption, if the errors occur during the execution of non-kernel code.

The use of hardware protections, then, can be motivated by a distrust of the
mechanisms involved in ensuring the integrity of software isolation.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 3

2. Design Overview

This section presents the design of hardware protection features in Singularity in broad terms.

2.1. Protection Domains

A thorough comparison of hardware protection techniques to software protection techniques demanded the
ability to measure the performance of the system with various permutations of protections, with the ability to
control:

 Whether hardware is used to protect the kernel’s data structures from specific processes

 Whether hardware is used to protect specific processes from each other

In order to enable the widest set of possible configurations, protection domains were introduced.

A Protection Domain is a collection of processes. Hardware is used to isolate each
protection domain from all others.

The kernel, of course, is a special case. In the usual case, hardware mechanisms are also used to isolate the
processes within a protection domain from the kernel. However, a protection domain can also be configured so
that hardware is not used to isolate its processes from the kernel. Such a protection domain is referred to as a
kernel domain, and there can be more than one kernel domain.

A Kernel Protection Domain, or “kernel domain”, is a protection domain such that
hardware protections are not used to isolate the processes within the domain from the

kernel.

Protection domains can be used to group together processes that should be able to communicate as efficiently
as possible, at the cost of forgoing hardware protection between them. When it is desirable to use hardware
protection techniques to isolate two processes from each other, they should be placed in separate protection
domains. In the extreme, every process can be situated in its own protection domain.

The full power of SIP isolation continues to apply to processes situated in the same protection domain. This is
quite different from traditional operating systems, in which code executing within the same hardware-protection
boundary (i.e., process) used weak isolation mechanisms, if any.

Similarly, processes that can be “trusted” sufficiently to not warrant hardware protection from the kernel can be
placed in kernel domains, decreasing the cost of their communication with the kernel. Processes that are not
“trusted” to this extent can be placed in “normal” protection domains, with a corresponding increase in the cost
of their communications with the kernel.

The configuration that most resembles a traditional non-microkernel operating system such as Windows is one
wherein all applications run in their own protection domains (one domain per process), but where driver
processes are loaded into a kernel domain. A configuration that could be considered closest to a traditional
micro-kernel architecture would be one in which every process, including driver processes, executed in its own
protection domain.

2.2. Implementation Requirements

The implementation aims to satisfy the following constraints:

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 4

 To the greatest possible extent, processes co-located within a protection domain should be able to
communicate as efficiently as they would on a Singularity system that does not use hardware
protection at all. That is, hardware-protection costs should be paid only at hardware-protection
boundaries.

 To the greatest possible extent, enabling hardware protection should not imply any global costs, for
example a performance penalty for processes not isolated from each other by a hardware boundary.

 Hardware protection must be as absolute as possible, that is, it should be possible to run a completely
untrusted process within a protection domain without any risk of compromising the rest of the system.
This precludes relying on a “trusted runtime” within hardware-isolated processes.

Note, with respect to the last constraint, that “completely untrusted” processes are a new construct in Singularity
and indeed, we still have no real-world examples of such processes. The experiments conducted for
“Deconstructing Process Isolation” did not involve “untrusted” processes per se, although in an attempt to
quantify the overhead associated with ensuring type and memory safety at runtime, one set of experiments did
involve eliding the usual run-time checks associated with those guarantees.

In principle, though, the introduction of hardware isolation should permit experimentation with processes that do
not have the usual type and memory-safety properties that we have traditionally relied on in Singularity.
Whether this is actually desirable or not is left to the judgment of the reader.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 5

3. Design

This section presents the specific changes that have either already been made to Singularity, or are intended, to
support hardware protection.

In order to support the “Deconstructing Hardware Protection” experiments, a core set of changes have already
been carried out to implement hardware isolation. However, these changes carry significant limitations, which
are called out.

There are two main mechanisms available on full-featured modern processors that we leverage to provide
hardware isolation:

 Memory virtualization (via the organization of memory into pages, and a Page Translation Table),
with associated per-page access protections, and

 Execution privilege levels to restrict the use of potentially dangerous machine instructions

Swapping, or the practice of selectively writing memory pages to a backing store, such as a hard disk, in order
to up RAM for other use, is not directly related to the issue of hardware protection, and is, in any event, not part
of this project.

3.1. Memory Virtualization

As in traditional systems, the processor’s ability to employ Page Translation Tables, which map the logical
addresses requested by running code to physical memory locations, is used to create separate memory
“address spaces”, that serve to isolate processes from each other by making it impossible for one process to
address the memory used by another. Switching between address spaces involves flushing and reloading the
processor’s cache of Page Translation-Table entries (the Page Translation Lookaside Buffer), which potentially
costs many memory cycles, as the new page table entries must be loaded from main memory.

In Singularity, each protection domain has an associated address space.

3.1.1. Organization of virtual memory

The memory that is accessible to processes when the processor’s page-translation feature has been activated
is referred to as “virtual memory”, because its mapping to physical memory is flexible and under the control of
the operating system. Note that our usage of this term has nothing to do with “swapping”.

Singularity organizes the 32-bit addressable memory space into a kernel range, in low memory, and an
application range, in high memory. The location of the boundary between the kernel range and the application
range is controlled by code constants.

Microsoft.Singularity.BootInfo.KERNEL_BOUNDARY determines the location

of the kernel / application memory boundary; currently it must be set

to a multiple of 1GB to facilitate the organization of the page-table

structure.

As in traditional systems, the explicit kernel range ensures that the kernel’s data structures are always
accessible. The “application range” can accommodate the address space of one Protection Domain at a time.
Switching from one Protection Domain to another involves reloading the page-table register (CR3 on an x86
processor), which results in the processor flushing its internal cache of page-table entries.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 6

Singularity takes advantage of the “Global” flag on page-table

entries. This flag indicates, on x86 architectures, that flagged

entries should not be flushed across CR3 reloads. Because the kernel

range is mapped in the same way in every address space, this flag is

used to prevents mappings for pages in the kernel range from being

invalidated on address-space switches.

N.B: The organization of virtual memory on a 64-bit architecture is

likely to be significantly different. In particular, virtual address

space is no longer a scarce resource, so it becomes possible to keep

all address spaces mapped at all times, and employ different

techniques to ensure their isolation from each other.

3.1.2. Memory tiers

In the original Singularity implementation, there was an identity mapping between virtual addresses and physical
addresses. As an implementation detail, memory paging was activated during the OS boot sequence, but only
for the convenience of being able to mark the first page of memory as unmapped in order to trap references to
the null address at runtime.

A single OS facility, encapsulated in Microsoft.Singularity.Memory.Pages, administered physical memory and
satisfied memory-allocation requests from processes. This page-manager implementation maintained free lists
of memory ranges, organized by size. Because of the identity mapping between virtual addresses and physical
addresses, it was possible for inconvenient memory-usage patterns to fragment physical memory, and indeed
this phenomenon was repeatedly observed to degrade performance and sometimes cause memory allocation
requests for more than one page to fail.

On non-PAGING-enabled Singularity builds, memory is never yielded back

to the operating system by process runtimes, in order to avoid

fragmentation of physical memory. Obviously, this is an interim

“solution”.

With the introduction of a proper virtual-memory management system, the issue of physical-memory
fragmentation can be prevented, at the cost of additional complexity. Memory in Singularity is now organized in
the following tiered fashion:

 Physical Pages are administered by Microsoft.Singularity.Memory.PhysicalPages. Physical memory
pages are tracked with a physical-pages table, which is constructed during the boot sequence before
processor paging is enabled. The physical-pages table resides in an identity-mapped area low in the
kernel memory range, so it is always directly accessible after processor paging has been enabled. The
page table is implemented such that free pages can be identified rapidly. Page allocations are only
supported one-at-a-time, as memory fragmentation is meant to be prevented in higher tiers.

 I/O Memory is a fixed range of physically contiguous memory that is allocated during the boot
sequence, before processor paging is enabled, in order to support drivers that require more than one
physically contiguous page of memory for DMA transfers. Note that since this range of memory is
always backed by physical RAM, it is a precious commodity. This range of memory is also identity-
mapped after processor paging is enabled, and is administered separately by the
Memory.PhysicalHeap object. The PhysicalHeap manager is able to satisfy requests for more than
one contiguous page of memory, although it is possible for the I/O memory range to become
fragmented, much as the original Singularity memory pool did. Memory is administered by maintaining
a page table at the beginning of the I/O memory range that includes a threaded free-block list,
organized by size, similarly to the original Singularity memory manager.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 7

 Virtual Memory Ranges are administered by the Memory.VirtualMemoryRange class. A virtual
memory range spans a subset of the addressable virtual memory space, and within that range, an
instance of the Memory.VirtualMemoryRange object is able to satisfy requests to allocate virtually
contiguous ranges of memory. Unlike physical memory and I/O memory, a virtual memory range is not
initially backed by physical memory pages. To satisfy an allocation request, the VirtualMemoryRange
implementation first identifies an available range of virtual addresses, and then requests physical
pages (which need not be contiguous) to back that address range. VirtualMemoryRange makes use of
the Memory.VMManager machinery to map and unmap memory pages.

The allocation scheme employed by VirtualMemoryRange is currently very

simplistic: a high-water-mark for memory allocation is maintained,

which is lowered when the topmost allocated memory is freed. New

allocation requests are satisfied from above the high-water mark.

Fragmentation may cause allocations to eventually fail. In the long

run, improved interaction between the virtual memory manager and

process GCs will need to occur to avoid fragmentation.

 Process Heap Memory is administered by each process’ runtime library. Every protection domain’s
memory area resides on the substrate of a VirtualMemoryRange manager object, so processes within
a protection domain may interfere with each other by causing fragmentation of their shared memory
space. This is permitted by the design.

There is currently an unhealthy coupling between the Singularity

process runtime and the operating system’s memory management: the

process runtime assumes that there is a page table accessible with a

full word available to describe each addressable page of memory. The

runtime further assumes that it can determine the availability and

nature of memory pages by examining this table directly, and that GC-

specific state information can be stored into certain bits of this

table’s per-page data words.

In order to satisfy this assumption, VirtualMemoryRange currently

allocates such a page table for each memory range. However, the space

consumption of this table is considerable, and encapsulation of the

memory tiers is compromised by its existence.

As part of the hardware-protection work, the runtime memory code was

altered to not assume, among other things, that its addressable range

began at the zero address and extended for all of memory! Further

improvements are necessary to eliminate the need for this large,

linear memory table.

3.1.3. Multiplicity of Exchange Heaps

The current Singularity design includes a single, system-controlled “exchange heap” through which all IPC is
conducted. Because no part of a hardware-isolated Singularity process may be trusted, this approach must be
revisited when hardware protection is to be enabled.

Rather than use a single exchange heap for the entire system, a Singularity system now:

 Always has an exchange heap for the use of the kernel

 Has an additional exchange heap per non-kernel protection domain

Processes running in kernel domains use the kernel’s exchange heap.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 8

The multiplicity of exchange heaps is necessary to ensure that even without trusting any portion of any process
running in a non-kernel domain, we can be assured that a process running in one protection domain cannot
corrupt the exchange heap used by a process running in a different protection domain.

Microsoft.Singularity.Memory.SharedHeap has been generalized so it can

be multiply instantiated. Previously, it was a singleton class.

3.1.3.1. Integrity of exchange heap records

In the software-only Singularity design, the integrity of the system-global exchange heap is safeguarded by the
trusted runtime component of every process. With hardware protection, we no longer wish to rely on the runtime
component of applications to ensure the integrity of hardware-protection boundaries.

Because it is impossible for the kernel to marshal data into a heap structure whose integrity cannot be
guaranteed, it becomes essential to defend the integrity of the exchange heaps with hardware techniques.

This is accomplished by ensuring that exchange heap allocation records are situated on physically distinct
pages from the actual data of each exchange heap block. The allocation-record pages can be written only by
the kernel, ensuring their integrity. Allocations and deallocations must be accomplished via ABI calls, which was
already the case in the previous Singularity design.

N.B: Allocation-record pages must remain readable to client processes

because pointers to exchange heap blocks are actually pointers to the

block’s allocation record, and the client process performs a double-

indirection to access the block’s data.

The exchange heap implementation (Memory.SharedHeap) was already

arranged such that allocation records are on physically distinct

pages, with one exception: block refcounts are situated inline with

the block data, on data pages. The refcount feature, however, is used

only by the implementation of channel endpoints, but never directly by

client applications. With the advent of hardware protections, the

refcounting facility in the exchange heap is deprecated, to be removed

once conversion to the new, hardware-protection-friendly channel

implementation is complete.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 9

3.2. Execution privilege

Virtual memory is used to isolate the processes running in different protection domains from each other; since it
becomes impossible for a process in one protection domain to form an address that refers to the memory
accessible to the processes of another protection domain, the domains cannot interfere with each others’ data.

Kernel memory, however, is always mapped, so it is always possible to form an address that refers to kernel
memory. Processor privilege modes are used to ensure that processes running in non-kernel domains are
unable to access memory belonging to the kernel. All memory pages within the kernel range are marked (in the
page-mapping table) as being accessible only when the processor is running in “supervisor” mode (as opposed
to “user” mode). On an x86-architecture processor, supervisor mode corresponds to “ring 0”, and user mode
corresponds to “ring 3”.

Currently, kernel memory is not marked inaccessible to user-mode

processes, since user / supervisor separation of shared structures

such as the ThreadContext structure has not been completed.

3.2.1. ABI (process-to-kernel) transitions

In the original Singularity design, Application Binary Interface crossings from processes to the kernel are
implemented simply as function calls (modulo housekeeping such as indicating the transition boundary via stack
markers). When processes are run within non-kernel protection domains, this is no longer possible, as code
running at lowered processor privilege cannot directly call code that must run at high processor privilege (and is
located on memory accessible only to high-privilege code!)

A multi-step process enables processes to invoke the kernel via ABI routines. In broad terms, a processor
privilege-transition mechanism must be used. On the x86 architecture, Singularity employs the syscall /sysreturn
pair of instructions for transitioning from ring 3 to ring 0 and back again.

The syscall mechanism allows the operating system (or other privileged code) to arrange for unprivileged code
to be able to safely invoke privileged code. This is accomplished by loading certain processor registers with the
address of a master dispatcher routine to be invoked for any unprivileged-to-privileged code transition, along
with certain pieces of state information to be loaded into the processor at transition time. Unprivileged code is
permitted to execute the sysenter instruction, and the effect is to jump to the master dispatcher routine and
elevate processor privilege. A calling convention must be defined between unprivileged and privileged code; this
convention typically supports requesting more than one distinct operation by use of a selector code.

Such a calling convention is defined for Singularity. On calling

sysenter, x86 register ECX contains the ABI-routine selector code, and

EDX contains a pointer to the first function argument, situated on the

unprivileged code’s stack. EDX+4 contains the second argument. EDX+8

is ignored, and further arguments are found at EDX+12. On ABI

completion, execution is returned to EDX-4. [Review!]

3.2.1.1. Build Time

A “normal” Singularity process is linked against a stand-in for the kernel assembly, such that the final executable
indicates that each ABI entry point that the process uses must be fixed up at load time by the OS loader. The
Singularity loader matches each imported symbol to the appropriate kernel address at process-load time, and
by the time the process code executes, it has all necessary addresses for jumping directly to the kernel when
invoking an ABI.

Currently, a process that is to be run at lowered privilege on Singularity must be prepared differently at build
time.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 10

This requirement should be lifted.

The process, rather than being linked such that it has imported symbols to be resolved by the loader, instead
becomes fully self-contained, by ensuring that each internal call to an ABI is instead resolved to an assembly
stub that sets up correctly and then employs the sysenter instruction to jump into the kernel.

Currently, a build tool named syscallbuilder is employed to automatically generate process-side assembly stubs
for each ABI entry point used by a process.

Implementation limitations:

syscallbuilder is driven off dumpbin output, because we require the

use of fully-decorated names in order to be able to calculate the size

of function arguments. This should instead be driven off an improved

version of the human-maintained ABI-symbols list used to drive linking

against the kernel assembly.

Also, syscallbuilder uses hard-coded knowledge of the size of various

primitive types used in ABI functions in order to generate assembly

stubs. This information should be extracted from Bartok somehow

instead, to eliminate fragility.

On the kernel side, the syscallbuilder tool also generates an assembly stub that converts from the ABI-
invocation convention to the argument-passing convention expected by each ABI implementation function
(currently, fastcall). These stubs are invoked by the master dispatch routine to properly invoke the
implementation for the chosen ABI operation.

3.2.1.2. Runtime ABI invocation

ABI invocation in a hardware-protection world is a delicate matter, and not only because a special mechanism
must be used to transition across processor-privilege levels. Because we do not wish to trust any portion of the
runtime system for hardware-protected processes, the kernel must take pains to avoid assuming that any
process-supplied data, including implicit data such as its stack pointer, is valid. It is also essential that the kernel
not allow any of its state, in particular the kernel’s stack, from being accessible to unprivileged process code, lest
the process accidentally or maliciously corrupt it.

Implementation limitation:

Every single ABI entry point should carefully validate its parameters.

None do in a way that is adequate to defend against completely

untrusted processes.

The sequence of events on ABI invocation is roughly as follows:

 Application runtime code pushes all ABI arguments onto the process stack and prepares the processor
state as per the ABI invocation conventions.

 The application executes sysenter.

 Execution is transferred to the kernel’s master ABI dispatching routine, at elevated privilege. Interrupts
are disabled as a side effect.

 The kernel immediately switches the stack pointer to a per-processor stack segment for use in early-
ABI entry. This ensures that no housekeeping computation is performed using the untrustworthy
process stack pointer.

 Shortly thereafter, the kernel switches to a fresh, kernel-memory-range stack chunk. When this is
complete, interrupts can be re-enabled and the processor-global ABI-entry stack chunk is available for
reuse.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 11

 The master-dispatch routine invokes the appropriate automatically-generated stub to convert process
arguments to the calling convention expected by the ABI-implementation function, and calls the
appropriate implementation function.

 After completion of the ABI operation, sysreturn is used to lower processor privilege before jumping
back to the process’ indicated resumption point.

Implementation limitations:

Stack marking is almost certainly not correct at the moment; need to

look into this

The early-stage dispatcher stack chunk should be per-processor, but is

currently system-global

We should allocate and cache an initial kernel stack chunk per thread

to optimize away as many of the stack-chunk allocations on ABI

invocations as possible.

Dispatch handling appears incorrect in places but does not break

because we have not yet enabled memory protection!

The entire ABI implementation path should be resistant to bad data

being passed in by the process. It may be impossible to accomplish

this without properly processing page faults (converting them to

exceptions that can be caught)

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 12

3.3. Cross-protection domain channel communication

In the original Singularity design, each channel endpoint contains a pointer to its peer endpoint, and data
transmission is accomplished by the sending process by writing directly into its peer-endpoint structure.

In the hardware-protected world, channel communication can occur across protection-domain boundaries, in
which case channel endpoints are situated in different address spaces. This prevents the implementation
strategy of writing directly into the receiving endpoint’s data structure. As well, of course, that implementation
raises trust issues: processes should not be able to arbitrarily corrupt each others’ endpoint structures when
they are situated in different protection domains.

In order to preserve the integrity of the channel-endpoint structures, they are cleaved in two: the core endpoint
structure resides in the kernel range of memory, and is not directly accessible to the owning process. The core
structure contains the waithandle used to signal the arrival of data, which could be arbitrarily corrupted were it
accessible to the process, as well as the peer-core pointer, which could be similarly corrupted. The core
structure also contains a buffer area for marshalling data, as described below. The application-space endpoint
structure contains the usual buffer area for receiving data transmitted from the peer.

3.3.1. Data marshalling

The approach selected for marshalling data across protection domain boundaries is currently double-buffering.
That is, transmitted data is first copied into kernel memory, then, at a later time, when the target address space
is loaded, it is copied into the application-range of memory for the receiving process. Obviously, this approach
has the disadvantage of inefficiency. We were unable to produce a satisfactory direct-copy design in the
constrained time ahead of the submission deadline that drove the original implementation work.

In the original Singularity design, marshalling of structured data (data that contains pointers to other data blocks)
was accomplished by generated code in the transmitting process. The generated code embodied the compiler’s
knowledge of the layout of the data to be transmitted, albeit not in a form that was directly usable by other code
at runtime. In the hardware-protected world, we have shifted to a different design. Via an extension to the
SystemType mechanism, processes must register a structural description of the types they intend to exchange
via channels. The description includes the location and types of any pointers within the structure. The
description is sufficient to allow the kernel to fully marshal data structures once the types involved have been
registered.

Implementation limitation:

Currently, the extended SystemType mechanism has not been implemented;

although there is a type-registration method, it does not include a

description of pointer offsets and types. As a consequence, the

current data-marshalling implementation is limited to “flat” data.

3.3.1.1. Channel data transmission

Transmission of channel data is relatively straightforward. In all cases, there is a peer-endpoint structure to the
transmitting endpoint allocated in the transmitting process’ memory space. In the case that the endpoint peer is
truly co-located with the transmitting process, this structure corresponds directly to the receiving process’
endpoint structure. In the case that the receiving process is situated in another protection domain, this structure
is a dummy used for purposes of marshalling data.

In either case, the transmitting process first writes the data to be transmitted directly into the apparent peer-
endpoint structure. On completion, it performs an ABI call, NotifyPeer(), to signal its peer that data is waiting.
This ABI call has been extended to now potentially signal to the caller that its peer is, in fact, situated in a remote
protection domain. In the event that it receives this indication, the transmitter is required to make further calls to
cause its data to be marshaled to the recipient.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 13

Today, the additional operations involve multiple calls to

MarshallPointer and MarshallMessage, but this is a consequence of the

incomplete implementation. Eventually, a single call to MarshallData()

will suffice, since the kernel will be aware of the structure of the

data being transmitted, and a single call to MarshallMessage() will

complete the operation.

In previous implementations, a single ABI call was required to signal the peer endpoint’s waithandle. Today, in
the case that the sending and receiving endpoints are situated in the same protection domain, a single ABI call
to NotifyPeer() is required. The runtime overhead, obviously, is comparable.

There is also a new ABI, GetPeer(), to retrieve the peer pointer. This

operation did not previously involve an ABI call. However, we believe

that the peer pointer can be cached in the process’ endpoint

structure, eliminating this cost.

3.3.1.2. Channel data reception

Receiving channel data is somewhat more involved. There are two overall cases: it is possible that, at the
moment that data reception is attempted, data is already waiting in the recipient’s endpoint structure. This
receive mode is currently (and remains) extremely fast. The second case occurs if data is not already waiting. In
this case, the recipient must sleep against his endpoint’s data-ready signal event, taking care to address
possible race conditions involving the sender.

In the case that data is already waiting in the recipient’s endpoint, runtime performance remains as before, as
no ABI crossings are involved.

In the case that data is arriving from across a protection-domain boundary, it will initially appear to the recipient
that no data has been received. As part of the recipient’s preparations to suspend itself pending data reception,
it will call the PeerClosed() ABI to determine whether its peer has closed the channel. The kernel seizes on this
opportunity to marshal data into the recipient process’ exchange heap, and signal the reception of data in the
recipient’s endpoint structure, such that it appears to the recipient that data arrived concurrently with its call to
the PeerClosed() ABI.

The PeerClosed() operation must remain an ABI call, whereas determining whether one’s peer had closed the
channel did not previously involve an ABI call. This may represent an additional cost to be borne by
channel communications even when not spanning protection domain boundaries.

Currently, GetWaitHandle() is also a new ABI call, although, similarly

to the peer pointer, we believe that an endpoint’s data-ready

waithandle can be cached in the owning process.

3.3.1.3. Further limitations

Currently, the implementation of channel operations on PAGING-enabled

builds is completely separate from the implementation on non-PAGING

builds. There remains work to unify the implementation such that

substantially the same codepaths are used on both builds.

S I N G U L A R I T Y H A R D W A R E I S O L A T I O N

Copyright © Microsoft Corporation. All Rights Reserved. 14

4. Open Issues

 The ThreadContext structure needs to be cleaved into a kernel-protected portion and a process-
accessible portion. We have a design for this but it has not been carried out yet

 We are liable to uncover unexpected complications when we eventually enable memory protection

 It is still an open question whether the final unified design for channel communication can be made
every bit as fast as the current implementation when not crossing a protection boundary

The overarching open question:

 Some of the remaining implementation work may take considerable time to complete properly.
What criteria should be applied to determine what level of additional time investment is
appropriate?

