
S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 1

Credentials Manager

Design of the client-side credentials manager service.

Singularity applications and services need to communicate with network services, and to do so they

must often be able to authenticate on behalf of a user. The Credentials Manager Service allows

applications to perform authentication exchanges. It manages in-memory credentials, implements

authentication protocols, and safely exposes access to these authentication protocols to network

applications.

The Credentials Manager Service is analogous to some of the functions performed by the Local

Security Authority (LSA) service on Windows, and the SSPI API used to access them.

1. Introduction

This document describes the Credentials Manager Service, the contracts used to communicate with it,

and the associated command-line tool used to control the service.

2. Requirements

2.1. Sensitive credentials information, such as clear-text passwords, should not be

exposed.

Applications should be able to perform authentication exchanges, without having direct access to

sensitive information, such as private keys, clear-text passwords (referred to as “evidence”), etc. The

Credentials Manager never allows evidence to flow out of the CM process. Instead, authentication

protocols run within the CM process, and these protocols exchange authentication tokens with the

authenticating process.

2.2. Applications should be isolated from the details of the implementation of

authentication protocols.

Application designers should be able to focus on the details of their application protocols, and should

not be unnecessarily burdened with the details of authentication protocols or credentials management.

For example, the current implementation of the SMB client requires that the user specify a username

and password every time the user connects to a share. There is no sense of a login session, as there is

on Windows, which allows applications to make use of the user’s credentials.

Singularity

Design Note

39

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 2

2.3. Multiple authentication protocols should be supported

Different application protocols can use different authentication protocols. Windows supports NTLM,

Kerberos, MD5 CHAP, and more. The Credentials Manager should support multiple authentication

protocols, and in a way that allows for easy expansion in the future.

2.4. Users should be able to provide multiple different credentials, and should be

able to choose the conditions when those credentials are used.

Users may need to interact with many different network services, and the user may need to use

different credentials for specific services (machines) or sets of services. The Credentials Manager

should support this.

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 3

3. Design

The design consists of these components:

 The Credentials Manager Service. This is a singleton service process. (Once Singularity

supports multiple login sessions, it may make sense to create more than one instance of this

process. FFS.) (CredentialsManager.exe)

 A command-line tool, used for controlling the CM service. Users can add credentials (provide

a username and password), view existing credentials, delete entries, etc. Users can also

manage the set of protocol mappings, which allow applications to select the correct credentials

to use with a particular network service. (cred.exe)

 A library for use by applications, which provides access to the Credentials Manager. This

library allows applications (and services) to perform authentication exchanges with network

services. (CredentialsManager.Library.dll.)

 The contracts that are used by the CM service. (CredentialsManager.Contracts.dll)

Credentials Manager
Service

Login / Session
Manager Processes

Credentials Manager
Tool

SMB Client

HTTP Client

SQL Client

File Server

Web Server

SQL Server

Processes that
provide credentials

Processes that make
use of credentials

Singularity Host (Client) Network Servers

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 4

3.1. Contracts

The Credentials Manager uses several different contracts to communicate with clients.

3.1.1. CredentialsManagerContract

This contract is the first point of contact that any process has with the CM service. Clients can

connect to the CM using this contract at a well-known path, currently /dev/credentials-manager.

Clients may use this contract to do any of the following:

 Manage the credentials store, which is an in-memory set of credentials managed by the CM.

Clients can add credentials to the store (including evidence, such as clear-text passwords,

private keys, etc.), delete credentials, or view credentials (excluding evidence).

 Create instances of authentication protocols, using credentials from the credentials store. The

instances are known as supplicants. This allows applications to perform authentication

exchanges with network services. Each authentication protocol defines its own protocol-

specific contract or contracts.

 Manage the Protocol Mappings, which is an in-memory set of policies that allow applications

to select the correct credentials to use when contacting a network service.

The CredentialsManagerContract makes use of several exchangeable types, which are described

below.

3.1.1.1. Exchangeable Type – ProtocolTuple

public rep struct ProtocolTuple : ITracked

{

 public char[]! in ExHeap ApplicationProtocol;

 public char[]! in ExHeap ServiceAddress;

 public char[]! in ExHeap AuthenticationProtocol;

 public char[]! in ExHeap Realm;

}

The ProtocolTuple structure represents primary key of the Protocol Mapping Table.

The ApplicationProtocol field identifies the application, such as “smb” or “ftp” or “http”.

The Credentials Manager does not impose any constraints on this field, nor does it interpret its

contents. Clients of the Credentials Manager service can choose any value for this field.

The ServiceAddress field identifies the network address of the remote network service. This

field may be any protocol-specific identifier. It may be a DNS domain name, or a NetBIOS name, or

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 5

an IP address, etc. The Credentials Manager service does not interpret this field. Its structure is

determined by each network application that makes use of this service.

The AuthenticationProtocol field identifies the authentication protocol that the network

application wishes to use when communicating with a remote network service. These strings are

defined by the Credentials Manager service. Currently, the only supported protocol is NTLM,

identified by the string ntlm.

The Realm field identifies the authentication realm of the remote network service. Not all

authentication protocols use this field; those that do not can specify any value for this field. For

NTLM, this is the domain name of the remote network service.

3.1.1.2. Exchangeable Type – CredentialsId

public rep struct CredentialsId : ITracked

{

 public char[]! in ExHeap CredentialsName;

 public char[]! in ExHeap Tag;

}

This type identifies a set of credentials that are managed by the Credentials Manager Service. It

identifies credentials, but does not contain the evidence (such as clear-text passwords, etc.) associated

with that identity.

3.1.1.3. AddCredentials Request

in message AddCredentials(CredentialsId id, char[]! in ExHeap

password, bool replace);

out message Ok();

out message RequestFailed(CredError error);

Adds credentials to the Credentials Store, including the evidence for the credentials. Currently, the

only supported form of evidence is clear-text passwords.

If the replace parameter is set to true, then the request will replace any existing entry that matches

the same credentials ID. If the replace parameter is set to false, the service will refuse to replace

any existing entry, and the request will complete with an error code.

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 6

3.1.1.4. DeleteCredentials Request

in message DeleteCredentials(CredentialsId id);

out message Ok();

out message RequestFailed(CredError error);

Deletes the identified credentials from the Credentials Store. The credentials name and tag must both

match exactly those of the stored credentials.

3.1.1.5. DeleteAllCredentials Request

in message DeleteAllCredentials();

out message Ok();

out message RequestFailed(CredError error);

Deletes all credentials from the Credentials Store.

3.1.1.6. EnumerateCredentials Request

in message EnumerateCredentials();

out message CredentialsList(CredentialsId[]! in ExHeap list);

out message RequestFailed(CredError error);

Retrieves a list of the credentials in the Credentials Store. Only the credential identifiers are returned.

There is no way to retrieve the evidence for credentials.

3.1.1.7. AddProtocolMapping Request

in message AddProtocolMapping(ProtocolTuple tuple, CredentialsId

id);

out message Ok();

out message RequestFailed(CredError error);

Adds an entry to the Protocol Mapping Table. See the section on the Protocol Mapping Table.

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 7

3.1.1.8. DeleteProtocolMapping Request

in message DeleteProtocolMapping(ProtocolTuple tuple);

out message Ok();

out message RequestFailed(CredError error);

Deletes an entry from the Protocol Mapping Table. The protocol tuple must match exactly an existing

entry. Wildcards are never interpreted.

3.1.1.9. DeleteAllProtocolMappings Request

in message DeleteAllProtocolMappings();

out message Ok();

out message RequestFailed(CredError error);

Deletes all of the entries in the Protocol Mapping Table.

3.1.1.10. EnumerateProtocolMappings Request

in message EnumerateProtocolMappings();

out message ProtocolMappings(ProtocolMapping[]! in ExHeap list);

out message RequestFailed(CredError error);

Returns a list of all of the entries in the protocol mapping table. There is no defined order for the

entries.

3.1.1.11. FindMatchingProtocolMapping Request

in message FindMatchingProtocolMapping(ProtocolTuple tuple, bool

useWildcards);

out message NoMatchingProtocolMapping();

out message MatchingProtocolMapping(CredentialsId credentials);

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 8

This request searches the Protocol Mapping Table for the best credentials to use, using the specified

protocol tuple. This allows network applications to choose the appropriate credentials to use, without

requiring each network application to re-implement the same credentials selection logic.

3.1.1.12. CreateSupplicant Request

in message CreateSupplicant(

 char[]! in ExHeap authenticationProtocol,

 CredentialsId credentials,

 ServiceContract.Exp:Start! exp);

out message RequestFailed(CredError error);

This request creates an instance of an authentication protocol, called a supplicant. Network

applications can use the supplicant to perform authentication exchanges with remote network services.

The authenticationProtocol argument identifies the authentication protocol to use. These

values are defined by the Credentials Manager Service. The contracts library provides a class,

AuthenticationProtocolNames, which contains literal strings that identify the supported

authentication protocols; application designers should use references to these literal strings, rather than

hard-coding strings into the applications.

The credentials argument identifies the credentials to use. The credentials must already have

been stored in the Credentials Store.

The exp argument provides the export endpoint of a channel. Once the request succeeds, the network

application uses that channel to communicate with the supplicant implementation. The contract type

used depends on the specific authentication protocol being used. Since the client creates the channel,

the client may choose any contract that the authentication protocol implements.

3.1.1.13. CreateSupplicantForProtocol Request

in message CreateSupplicantForProtocol(

 ProtocolTuple protocol,

 ServiceContract.Exp:Start! exp);

out message AckCreateSupplicantForProtocol(

CredentialsId credentialsSelected);

out message RequestFailed(CredError error);

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 9

This request combines the FindMatchingProtocolMapping and CreateSupplicant

requests into a single request. The client provides a protocol tuple and a channel endpoint. If

successful, the Credentials Manager selects credentials, creates a supplicant, and sends a response

message, which indicates which credentials were selected.

3.1.2. NtlmSupplicantContract

This contract provides access to the NTLM authentication protocol implementation. The contract

provides only a single request, GetResponse, which computes the response to a challenge issued by a

remote network service.

This contract models the “legacy” or raw NTLM interface, not the NTLMSSPI interface, which uses

the GssSupplicantContract.

Start State

Ready State

out message Success()

Get-
Response

state

in message
GetResponse(challenge, type)

out message
Response(response)

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 10

3.1.3. GssSupplicantContract

This contract allows applications to use any authentication protocol that supports the GSS model.

GSS is described in RFC 2078, and is a platform-neutral and language-neutral model for

authentication protocols. Authentication protocols exchange opaque tokens, which the applications

exchange until both sides decide that authentication has succeeded, or one side decides that

authentication has failed.

Many authentication protocols support GSS, include Kerberos, NTLM, and the SPNEGO meta-

protocol.

Start State

WaitingFor-
Token State

Processing-
Token State

Succeeded
State

Failed State

out message
NeedFirstToken()

out message
FirstToken(token)

in message
AcceptToken(token)

out message
ContinueNeeded(token)

out message CompleteWithToken(token)
out message Complete()

out message
AuthenticationFailed(error)

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 11

3.2. The Credentials Manager Service

The CM Service is a singleton service process. It manages the in-memory Credentials Store and

Protocol Mappings table. It also contains the client-side implementations of the authentication

protocols.

3.3. The Credentials Manager Library

The Credentials Manager Library simplifies connecting to the CM Service and sending requests to it.

Most of the requests defined on the CredentialsManagerContract are exposed as static

methods. The library handles translating between exchange types and local heap types.

3.4. Supported Authentication Protocols

At present, only a single authentication protocol, NTLM, is supported. The Credentials Manager is

designed to support other authentication protocols, as they are implemented.

3.4.1. Windows NT / LAN Manager (NTLM)

NTLM is an old authentication protocol, with some known cryptographic weaknesses, but it is an

important protocol because it is so widely supported, and so easy to implement. Consequently, it is

the first authentication protocol supported. The NTLM implementation supports two supplicant

contracts: NtlmSupplicantContract and GssSupplicantContract.

The NtlmSupplicantContract allows network applications to deal directly with the NTLM

challenges and responses.

The GssSupplicantContract allows network applications to exchange NTLMSSP messages.

This provides the greatest degree of isolation between the network application and the authentication

protocol. The network application is responsible only for exchanging opaque byte sequences, called

tokens.

3.4.2. SPNEGO

SPNEGO is a standard for allowing network applications to negotiate among different authentication

protocols. SPNEGO is not itself an authentication protocol. This protocol is not yet implemented.

3.4.3. Kerberos

Kerberos is the favored authentication protocol of Windows domains. It is not yet implemented.

3.5. Command-Line Tool

Singularity currently has no user session management or authentication. Until it does, users need

some way to control network authentication. The CM package includes a command-line tool,

cred.exe, which allows users to manage credentials and protocol mappings.

The tool implements the following commands.

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 12

3.5.1. Add Credentials

cred @add [-default=false] [-tag=<tag>] <username> <password>

This command submits user credentials to the Credentials Manager. This allows client applications to

make use of credentials.

At this time, the only form of evidence that the Credentials Manager supports is clear-text passwords.

It is anticipated that support for private keys and other forms of authentication will also be added.

This command also adds a default protocol mapping, which matches all protocol tuples, for these

credentials. This is done as a convenience, since it is expected that most Singularity users, in the near

future, will be using only a single set of credentials. If you do not wish to add a default protocol

mapping, set the “default” parameter to false by adding -default=false to the command line.

The “tag” parameter allows the user to add multiple credentials that have the same username to the

credentials store. This is useful if you need to authenticate with more than one machine, and have the

same account name on those different machines, such as “Administrator” or “Test”. The tag value is

arbitrary. All requests that manipulate credentials take a tag value.

3.5.2. Delete Credentials

cred @del [tag-<tag>] <username>

This command deletes a credentials entry from the store. Applications can no longer use the

credentials.

If a tag value was specified when the credentials were originally added, then the same tag value must

be specified with this command.

3.5.3. Delete All Credentials

cred @delall

This command deletes all credentials in the store.

3.5.4. List Credentials

cred @list

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 13

This command displays a list of the credentials in the store. Evidence is not displayed.

3.5.5. Add Protocol Mapping

cred @addmap <app-proto> <service-addr> <auth-proto> <realm>

<credentials> [<tag>]

This command adds a protocol mapping to the protocol mapping table. Protocol mappings are

policies that allow applications to choose which credentials to use when authenticating with a specific

remote network service. Each protocol mapping consists of a protocol tuple, which describes when

the mapping should be used, and the name of the credentials that should be used (and an optional

credentials tag).

The protocol tuple consists of four fields:

 Application Protocol – This is the name of the application protocol, such as “smb”, “http”,

“ftp”, etc. The Credentials Manager does not impose any requirements on this field, but these

values should be chosen from a standardized list.

 Service Address – This is the network address of the remote network service. The nature of

this field depends on the application protocol. The Credentials Manager does not interpret the

contents of this field, so application designers are free to use whatever structure is appropriate.

For SMB, this field is the server name portion of a UNC address. For example, for the UNC

\\server\share, the Service Address field would be server.

 Authentication Protocol – This is the authentication protocol that the network application is

using. The only protocol currently supported is NTLM, identified by the string ntlm.

 Realm – This is the authentication realm, which may or may not be known or discovered by

the application protocol. The meaning of this value depends on the authentication protocol.

For NTLM, this is a domain name, such as WEBDEV. For Kerberos, this would be the DNS

name of the realm, such as northamerica.fabrikam.com. For some application

protocols, this value may be learned during connection negotiation. For others, it may be

unknown or unavailable, and in these cases, applications can use the wildcard value “*”.

Any of these fields may be set to the wildcard value “*”. Protocol tuples with fields set to wildcards

will match any request for credentials where the non-wildcard fields match. This enables the most

common scenarios, where a set of credentials is intended to be used for all machines in a particular

domain, or for all connections to a particular server, etc.

Examples:

cred @addmap * * * * domain\user

This command will add a default mapping (all protocol tuple fields set to wildcard), whose result is

the credentials “domain\user”. The credentials must have already been provided, using the @add

command.

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 14

cred @addmap * 192.168.0.10 * * .\test

Adds a mapping for all connections to 192.168.0.10.

cred @addmap * * * northamerica northamerica\joe

Adds a mapping that is used whenever authenticating with a machine in the domain

northamerica.

3.5.6. Delete Protocol Mapping

cred @delmap <app-proto> <service-addr> <auth-proto> <realm>

This command deletes a mapping that was previously added. The tuples must match exactly.

3.5.7. List Protocol Mappings

cred @listmap

This command shows all entries in the protocol mapping table.

3.5.8. Test Protocol Mappings

cred @testmap <app-proto> <service-addr> <auth-proto> <realm>

This command allows you to test the protocol mapping table. You specify a protocol tuple, and the

command shows you the credentials that are selected for that tuple.

S I N G U L A R I T Y C R E D E N T I A L S M A N A G E R

Copyright © Microsoft Corporation. All Rights Reserved. 15

4. Performing Authentication Exchanges

When an application wishes to connect to a network service, it often needs to prove that it is acting on

behalf of a specific user. There are many authentication protocols, and they differ in the number of

messages exchanged, structure of the messages, etc.

Applications that use the CM Service for authentication go through these steps:

1. Decide which credentials to use. If the application is configured to use a specific set of

credentials, then go to step 2. Otherwise, the application uses the CM Service to choose the

appropriate credentials. The application provides these fields:

2. Create a supplicant, which is an instance of an authentication protocol. The application

specifies the name of the authentication protocol, such as “NTLM” or “Kerberos”, and

provides an endpoint used to communicate with the supplicant. The application creates the

supplicant channel, and uses a contract that is specific to the kind of supplicant, e.g.

NtlmSupplicantContract or GssSupplicantContract. The application should

use either the CredentialsManager.CreateSupplicant or Credentials-

Manager.CreateSupplicantForProtocol method, which are in

CredentialsManager.Library.dll, to create and bind the supplicant channel.

3. Exchange messages with the network service and the supplicant channel. The nature of the

messages and the exchanges is specific to the application and authentication protocols.

4. At some point, the application decides whether authentication has succeeded or failed, and

deletes its channel to the supplicant.

