
S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 1

Exchangeable types

Specifying data formats for messages exchanged over
channels

This note describes the low level mechanism and typing support that enables processes to perform 0-copy data
exchange. The features are designed to decouple communicating parties and to enable static verification of the
hand-off semantics, namely that after the hand-off, the sending party no longer uses the handed-off data.

1. Introduction

SDN2 restricts Singularity processes to be closed with respect to executable code. Once a process is started,
the entire code base of that process is known and fixed. This has repercussions on the exchange of data
between processes. It limits data exchange to known-size data, since data cannot be accompanied by code to
interpret it. To illustrate this point, suppose a message containing an object of class B could be sent via a
channel. If the sender sends an object o of class C (a subclass of B) over the channel, the receiving end could
not possibly treat it as a C, since in order to know that there are extra fields and how to access them we would
require sending the new methods of C along as well.

Another factor in the design of data exchange is that we desire decoupling the communicating parties as much
as possible. Thus, we don’t (initially) want to rely on requirements that the client and server agree on some
particular version of code for some class C to be exchanged. The picture below shows two process descriptions
sharing only an interface consisting of contracts and reps (described in this document). The code bases of these
two processes can change independently as long as the interface does not change.

These aspects lead us to the current design which limits the data exchanged over channels to exchangeable
types. We define exchangeable types and their properties below. The latter sections explore impacts on
representation and typing.

Additionally, in order to support 0-copy data exchange we need a form of ownership model of exchangeable
blocks of memory. More precisely, we enforce on the sender side, that once a piece (or pieces) of data has
been handed off to another process, then the sender has indeed relinquished ownership and does no longer
access the sent data. The design enables static enforcement of the ownership transfer.

Singularity

Design Note

6

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 2

Decoupling of processes via interfaces.

2. Exchangeable types

A type is exchangeable (ET) if it satisfies any of the following conditions:

 It is a scalar

 It is a pointer to a representation struct (type R* in ExHeap)

 It is a (by value) representation struct (type R)

 It is a pointer to a variable sized representation vector of exchangeable types. (type RepVector<ET>)

 It is a (by value) representation vector of exchangeable types of constant size c. (type
RepVector<ET,c>)

Representation vectors and representation structs (referred to as rep types, for short) are new features not
present in the current MSIL type system. These are discussed in Section 2.1.

2.1. Representation types

2.1.1. Representation structs

Rep structs are aggregates of exchangeable types, similar to C# structs, but with the following differences:

 A rep struct has no methods, nor constructors

 Fields of a rep struct can only refer to exchangeable types

A block of memory representing a rep struct does not have a GC header. Rep structs can be allocated via a
new R operation, yielding a 0-initialized untagged block of memory.

2.1.2. Representation vectors

Representation vectors are either

 variable sized of type RepVector<ET>, containing elements of exchangeable type ET.
The actual bit representation of such representation vectors is kept abstract in Singularity but has to be

Process 2 Process 1

Contracts

Reps

Interface

Classes
Etc..

Classes
Etc…

Static Code View

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 3

common among all running processes. This is similar to channel endpoints, whose representation is
also controlled by the kernel. A possible representation is a single block of memory with a leading
element count.

 fixed size of type RepVector<ET, Constant>, containing Constant number of elements of exchangeable
type ET.

Variable sized representation vectors are manipulated as pointers to indirect blocks. Fixed size representation
vectors are manipulated by value.

Note the absence of Strings among the exchangeable types. Strings have to be exchanged as variable or fixed
length vectors of characters.

2.1.3. Occurrence of rep types

In order to make static verification of ownership transfers feasible, we restrict the occurrence of rep types to

 Locals

 Parameters

 Results

 Fields of rep structs

 Elements of rep vectors

 Message arguments

 Instances of type parameters that are of kind tracked. (See Section 5)

Additionally, by-value rep types (inlined rep structs or fixed size rep vectors) can only occur as fields of
rep structs or elements of rep vectors
See section 5 for how to refer to rep types from ordinary class objects.

2.1.4. Interior rep pointers

Since rep structs can contain other (inlined) rep structs (as opposed to a pointer to a rep struct), it becomes
necessary to obtain pointers to such interior rep structs. Therefore, we support an address-of operation on rep
fields inside of reps, yielding a pointer (not a restricted reference).

Since reps cannot be inlined in structs or classes, nor appear inlined on the stack, there is no need to ever have
restricted references to a rep.

[TBD: In order to make things simpler for the GC, we might want to restrict interior rep pointers to interior reps
starting at the head of the containing rep.]

2.1.5. Rep overlay views

In order to support packet processing, it may be useful to allow having a new view of a prefix of a rep vector or
rep struct (or any other part if we allow interior pointers). An overlay is simply a reinterpretation of the bits
according to some other rep type R’. E.g., if we have an array of 30 bytes, we could obtain a rep overlay R that
interprets the first 8 bytes as a float, and the next 4 bytes as a long. Such an ability would help in writing packet
processing code. [See the section on pointerfree structs in SDN17 for more on overlays.]

2.2. Properties of exchangeable types

Exchangeable types do not (directly or indirectly) contain any object headers. This property is intentional, since it
keeps the exchanged data independent from the particular heap representation of objects chosen by the GCs of
the sender and receiver, which in general may use different GCs with differing GC headers. As a result, it is not
necessary to adjust any GC headers when blocks of exchangeable data are moved between processes.

On the other hand, the Kernel is responsible for guaranteeing that exchangeable types either have a common
representation among all processes in the system, or else are adjusted by the Kernel as part of the transfer to
the target process’s representation.

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 4

2.3. Messages in channel contracts

Messages in channel contracts can only carry arguments of exchangeable type or endpoints. We single out
endpoints here to avoid having them sent in nested positions.

2.4. Example

[TBD: give an example…]

3. Rep-Isomorphic classes

Rep structs provide strong isolation between processes, but they are not convenient to program with. On the
sender and receiver side we would like to associate code with rep structs independently, so we can take
advantage of the usual programming abstractions provided by subtyping, methods, etc. To support such
abstraction, we allow processes to declare rep isomorphic classes. A rep-isomorphic class uses a particular rep
struct as its representation and declares only methods. For example,

 class MyClassForRepR : rep R, ITracked {

 }

declares class MyClassForRepR with representation R. Rep-isomorphic classes specify their representation like
a base class, but prefixed with the rep keyword. They can additionally declare a normal base class, as long as
that base-class is abstract and contains no data.

To construct a rep isomorphic object, one starts with a rep pointer r of type R* and calls the automatically
generated constructor:

 MyClassForRepR mr = new MyClassForRepR(r);

This operation has the effect of consuming ownership of r, but providing access to r via the new object.
References to rep-isomorphic class objects are treated like references to representation structs in that the
compiler enforces proper ownership.

In the other direction, one can simply cast a rep-isomorphic reference to a pointer to its representation:

 R* ptr = (R*)mr;

This operation consumes ownership of mr.

In order to implement rep-isomorphic structs, all processes have to agree to allocate rep struct blocks with
enough space for a class header (e.g. 12 bytes). The special rep-isomorphic constructor then simply initializes
the header bytes of the rep struct block passes as argument.

4. Regions

This section proposes the use of regions as a simple initial scheme for managing collections of rep blocks (rep
structs and rep vectors). Regions serve both as a well understood operational model, as well as a model for
static enforcement of the hand-off semantics. Recall that the hand-off semantics of a send requires that

- Before the send, the sender owns the transmitted reps

- After the send, the sender no longer accesses the transmitted reps

A region serves both as a runtime allocation pool, as well as a type-level name for a group of objects.

4.1. Operational view

Regions are explicit special objects at the IL level with type Region. They support the following operations:

 Allocation of a region

 Allocation of a rep type inside the region

 Manipulating a rep inside a region

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 5

 Explicit freeing of a region

 Joining two regions

 Handing off a region via a message send

 Receiving a region via a message receive

The semantics of these operations can be modeled by associating a boolean value live with each region
indicating whether the region is live in the accessing process, and associating with each rep block b the
region it lives in reg(b). The following sections describe the operations in more detail.

4.1.1. Allocation of a region

Region r = new Region();

The operation creates a fresh region r.

post: r.live

4.1.2. Allocation of a rep type inside the region

Rep1* rep1 = new Rep1(r);

Allocates a fresh rep struct in a given region r.

pre: r.live

post: r.live /\ reg(rep1) == r

Rep vectors are handled similarly:

RepVector<Char>* rv = new RepVector<Char>(r, 20);

Allocates a fresh rep vector of characters of size 20 in region r.

pre: r.live

post: r.live /\ reg(rv) == r

4.1.3. Manipulating a rep residing in a region

A rep block (vector or struct) residing in a region can be read and written. Both reads and writes have the
precondition that the associated region is live.

rep1.foo = 55;

 pre: reg(rep1).live

int i = rep1.foo;

 pre: reg(rep1).live

If the field or element read or written is of rep type, the following additional conditions apply:

rep1.foo = rep2;

 pre: reg(rep1).live /\ reg(rep2) = reg(rep1)

Rep2* rep2 = rep1.foo;

 pre: reg(rep1).live

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 6

 post: reg(rep2) = reg(rep1)

The operations on rep vectors have analogous conditions. These conditions enforce that everything reachable
from a rep in region r also lives in region r. This is a simplifying assumption we are making for the initial version
of this proposal. We can later relax this at the cost of a more complicated region model.

4.1.4. Explicit freeing of a region

r. Free();

Frees region r and all rep blocks contained in it.

pre: r.live

post: not r.live

4.1.5. Joining two regions

r1. Join(r2);

The operation joins the two regions into a single region. The representative of the joined region is r1, all
accesses to region r2 are forwarded to r1.

pre: r1.live /\ r2.live

post: r1.live /\ r2 == r1

Regions may need to be joined due to the restriction that fields of reps and elements of rep vectors point to reps
living in the same region as the rep containing the pointer (see also 4.1.3 and 4.2.2). In general, we can think of
regions as forming equivalence classes. Initially, each region starts out in its own class and join operations
merge classes.

4.1.6. Handing off a region via a message send

e. Send (r, rep1, e1, …, en);

The operation performs a send on an endpoint e, passing all the data contained in region r. The message object
received on the other side is rep1, which must be contained in r (as well as all reps reachable from rep1).
Endpoints e1..en sent in the same operations do not interact with regions in any way.

pre: r.live /\ reg(rep1) == r

post: not r.live

4.1.7. Receiving a region via a message receive

e. Receive (out r, out rep1, out e1, …, out en);

The receiver of a message on endpoint e obtains a region r, and the message object rep1 residing in region r.
Dually to the send, the received endpoints do not interact with the received region. The receiver owns the region
r and has the same right to it as if the receiver had allocated that region.

post: r.live /\ reg(rep1) == r

4.2. Static enforcement of region model

The goal of the static enforcement of the region semantics is to guarantee at compile-time all the pre conditions
of operations involving regions spelled out in the previous section. As a result, we obtain the following benefits:

 We are statically guaranteed that no blocks in dead regions are accessed ever.

 This allows explicit lifetime management of regions (and their content) by the programmer via explicit
Free and message send operations.

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 7

4.2.1. Simplifying assumptions

To keep the static checking discipline decidable and simple for the programmers we restrict region use as
follows1 :

1. regions cannot be stored in fields of any objects or structs (but see Section 5 on how to relax this).

2. regions are not exchangeable types

Given the semantics of the previous sections, we also know the following condition:

3. a rep block r2 referenced from a rep block r1 (via a field or element of r1) lives in the same region as r1,
i.e., reg(r2) == reg(r1).

Because of condition 3 above, we only need to statically track the region of local pointers to rep blocks.
Because of condition 1, we only need to track the liveness of regions in local variables.
Static enforcement (at compile-time) thus tracks the identity and liveness of regions and the mapping
between rep blocks and the region they reside in. At any operation involving a region, the associated
precondition is statically checked, thereby preventing erroneous operations (like dangling pointer
accesses) at compile-time.

4.2.2. Rep writes and region joins

Field assignments defined in the previous sections requires that an object or rep block in region R only points to
other rep blocks in region R. The compiler can help the programmer maintain this invariant by inserting region
join operations automatically. Suppose we had the following code:

Region reg1 = new Region();

Region reg2 = new Region();

Rep1* r1 = new Rep1(reg1);
Rep2* r2 = new Rep2(reg2);

r1.f = r2;

The last assignment requires that reg(r2) is the same region as reg(r1). The compiler can insert the operation

r1.Join(r2);

in front of the field assignment to maintain the desired invariant, in the case that it would be violated otherwise.

An analogous situation appears if we store a rep pointer into a rep vector at a particular index. In that case the
region of the stored pointer is joined with the region of the rep vector.

4.2.3. Message sends

Separating the endpoints from the message, creating the top-level rep block and initializing the message tag, as
well as providing a handle on the region for this message is the job of the compiler or runtime system. The
programmer would not have to perform these tasks and could instead work with a higher-level message send of
the form:

e.M(x1,x2,…, xn)

1
 We can later relax these decisions at the cost of a more complicated static checking model, requiring more

annotations, but providing greater flexibility.

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 8

where each xi is either an exchangeable type or an endpoint. The compiler can take care of merging all
associated regions among x1..xn, building the single rep struct containing all the non-endpoint arguments and
passing the associated region handle to the primitive send operation.

4.2.4. Message receives

Analogous to sends, the compiler can present access to elements in received messages in a uniform way,
hiding the special treatment of endpoints and the region handle.

4.2.5. Cross-method support for static analysis

Because of the restrictions made in Section 4.2.1, region objects and rep pointers associated with regions (other
than GC) only appear in registers, on the stack, and in parameters and results of methods.

This allows us to elide region information from programs in almost all cases. Within a method, all region
associations and liveness information is maintained transparently. At method boundaries, we need some
information about what the method does with regions associated with the method parameters of rep type. The
method must declare the following:

- What regions are no longer accessible after the method returns: thus far, regions can become
inaccessible by callers, if the callee sends the region via a message or frees the region explicitly. A
method indicates these situations with a declaration of the form consumes p. If p is a rep pointer it
indicates that the region associated with p is consumed, otherwise, if p is a region, the region itself is
consumed as a result of this method call.

- What regions are being joined into other regions. The declaration p absorbs q declares that during the
method execution, the region equivalence class of parameter p absorbs the region equivalence class of
parameter q.

- In parameters do not usually need to indicate what region they are in, as long as the method treats
them without being concerned what region they live in. In order to constrain the region of rep type
parameters, one can use the annotation reg(p) = reg(q), where p or q can be rep type parameters or
region parameters.

- Which region the out parameters and the result of the method live in: There are several cases:

1. the result or out parameter p is a region and the callee transfers ownership of the region to the
caller. A declaration grants p indicates this transfer of ownership.

2. the result or out parameter is of rep type and the callee transfers ownership of the associated
region to the caller. A declaration grants p indicates this case. The compiler can provide the
new region implicitly as an extra method result.

3. the result or out parameter lives in the same region as another in or out parameter. In this case
a declaration reg(p) = reg(q) is used.

Note that the ownership transfer needs to be declared for each region once only. E.g., if two out
parameters p and q of rep type are returned and they both live in the same region, whose ownership is
transferred from callee to caller, then the annotations would be grants p; reg(p) = reg(q), rather than
grants p; grants q. The latter would indicate that p and q live in distinct regions and that ownership of
both is transferred.

5. Tracked types and containers

Tracked types describe all data that require ownership tracking, namely endpoints, regions, and pointers to reps
(in regions). Objects of tracked type are never directly shared among threads.

Ordinary class objects cannot refer to objects of tracked type directly in fields for otherwise ownership tracking
would have to extend to ordinary classes. This section discusses how to overcome this serious limitation. The
picture below tries to convey the different kinds of data manipulated by a program, as well as the possible
references between these kinds of data. At the top-level, we have ordinary class objects (on the left), and
tracked objects (on the right). Both kinds can be referenced from the stack. A reference to a group means to any
object within that group (even sub groups). Thus, the stack can reference endpoints and reps as well. Ordinary

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 9

class objects can hold references to other class objects. (Primitive scalar types are not part of the picture since
they can appear everywhere). One sub-group of tracked types is exchangeable types and reps are a sub-group
thereof. Reps can refer to other reps.

Ordinary class objects cannot directly refer to tracked types. However, the sub-group tracked type containers
can refer to tracked types. Tracked type containers are trusted primitive data structures that preserve ownership
invariants and also offer simple mutual exclusion among threads. Additionally, tracked type containers also
provide the necessary OS operations for endpoint rebinding.

Object classification and possible reference patterns.

Tracked type containers are predefined since they are trusted (hand-verified) to observe the necessary
ownership transfer invariants. If the programmer wants to write his own verifiable tracked type containers, we
need to have more annotation machinery. We leave this as a future extension. [Ask MAF for details.]

5.1. The simplest tracked type container

The simplest tracked type container is a TREF<T>, containing a single reference to a tracked type. It has the
following signature:

class TREF<tracked T> {

 public TREF<T>(T x) consumes x;

 public T Acquire() grants result;

 public void Release(T x) consumes x;

};

The type parameter T of TREF is marked tracked in order to allow this type to be instantiated with tracked
types. The constructor takes a T as argument x and indicates that it consumes ownership of x. The Acquire
operation returns the tracked type object of the TREF and transfers ownership to the caller (indicated by fresh).
Acquire blocks the calling thread if the last operation on the TREF was an Acquire. If a thread tries to Acquire
twice in a row, it self-deadlocks. Release returns a tracked type object into the TREF, thus the parameter is
again marked as being consumed. Release can be called with the same tracked type object as was obtained by

classes

tracked types (non shared)

exchangeable

types

reps
endpoints

regions

tracked
type

containers

stack

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 10

the preceding Acquire, or with any other object of the correct type T. Release can only be called after an Acquire
by the same thread. The correspondence of Acquires and Releases is checked statically and has to occur
within a method. A thread could dynamically try to Acquire the same TREF it already has acquired. This
situation results in a runtime exception. This possible error is the price to pay for the flexibility of referencing
tracked types from arbitrary other objects.

5.1.1. Example

A NameServer needs to map names to service provider endpoints. Since endpoints are tracked types, the
hashtable cannot directly map to endpoints. Instead, the table will map from names to TREF<
imp<ServiceProvider>>, where imp<ServiceProvider> is an imported endpoint with contract ServiceProvider.

When the server looks up a service, it obtains a TREF<imp<ServiceProvider>> object. It then tries to Acquire
the endpoint and interacts with the endpoint (obtaining a new service instance). When the endpoint is back in
the initial state of the ServiceProvider contract, the TREF can be Released.

If a second thread of the nameserver tries to serve a request for the same service, while the first thread has
Acquired the ServiceProvider, the second thread blocks until the first thread Releases the TREF associated with
this service.

5.2. Tracked queue

A slight generalization of the TREF is a queue of tracked types.

class TQUEUE<tracked T> {

 public TQUEUE<T>();

 public void Enqueue(T x) consumes x;

 public T Dequeue() grants result;

};

Tracked queues store tracked type objects and guarantee that ownership is transferred on an Enqueue from
caller to the queue, and on Dequeue from the queue to the caller. The Dequeue operation blocks until an item is
available.

6. Copying transfer and non-exchangeable data

If data is to be transferred by copy rather than hand-off, the copy must be made explicitly into a fresh region, and
then the copy can be handed-off. Automatic copying of entire regions could be supported by the runtime system
if there is such a need.

This section describes how data associated with an ordinary object can be transferred via a channel. Data
transfer of ordinary objects is supported via the following steps:

1. allocate a rep block corresponding to the rep to be transferred

2. fill in the rep block with appropriate fields from the object to be transferred

3. send the rep block (hand-off of associated region)

4. the receiver obtains the rep block (and the associated region)

5. the receiver can construct a new object of some class, using the data in the rep block to initialize the
necessary fields.

Thus, transferring of object data in principle does not require any particular support, since in order to transfer
data for a class C according to representation R, all we need is for C to have the following methods:

 A method returning an R* initialized with the data of C

S I N G U L A R I T Y E X C H A N G E A B L E T Y P E S

Copyright © Microsoft Corporation. All Rights Reserved. 11

 A constructor taking an R* as an argument.

These methods essentially act as a serializer and a deserializer to and from representation R.

6.1. Autogenerated serialization

It may be convenient to obtain some simple code to produce reps from a class and vice versa (essentially
serialization and deserialization code) automatically. This aspect is beyond the scope of this design note. The
Execution Environment team is looking at support for writing code transformations through various tools. Thus
serialization would be addressed by a code transformation tool that automatically generates the necessary code
for desired classes.

7. Extensions

7.1. Small message optimizations

The implementation for handing off regions via message send may need to be optimized for small messages in
such a way that hand-off can happen at granularities less than an entire page.

7.2. Beyond trusted tracked type containers

Verifying code that stores tracked types in fields of classes directly, rather than through predefined trusted
tracked type containers is feasible via a discipline of protecting such fields by locks and treating the ownership
guarantees as object invariants.

