
S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 1

The Application Manifest

Install, update, and uninstall as OS features.

Current operating systems contain abstractions for many components of modern applications, but the
application itself remains unrepresented. This situation leads to inefficiencies in running and processing
applications and their data. In particular, with knowledge of the application as a first-class citizen in the
system we could provide significant stability improvements in updates, installs, and uninstalls. This
document describes an important component of the application abstraction, the application manifest, in
the context of Singularity and motivates its uses.

1. Introduction

An application can be represented as a simple combination of declarative statements referring to resources and
their dependencies. Unfortunately, the current model of the application in modern operating systems is simply
the process. Objects of coarser granularity are only implicitly represented by metadata and files scattered
throughout the system. This lack of a coherent representation has led to significant difficulty and expense at
Microsoft and elsewhere in deploying complex applications. It is well known that adding or removing an
application can cause supposedly unrelated software to break. Several components of Singularity would benefit
from knowledge of the application as a first-class citizen in the OS. The two most obvious examples are setup
and update. Since the Singularity model prefers that our boxes require zero-administration, we must be able to
send out updates with confidence that they will not change the state of unrelated applications. Similarly, the
security model under Singularity requires knowledge of application boundaries, dependencies, and identities to
enforce access policies and rights. These properties can be described in terms of the components of an
application, which are simply the resources in the system along with the dependencies between them.

Although many current setup languages mix declarative and imperative components, we claim that all
installation actions can be represented as declarative statements. We choose to represent in our application
manifest only the final state of the application after install or update, and leave the process of constructing this
state in the system to the Singularity installer. We ensure that enough information exists in our manifest for the
installer to deduce the correct installation steps and to decide whether or not the installation has succeeded.

1.1. Goals

The principal goal of the application manifest is to allow the operating system to add, update, and remove
applications without changing the correctness of any other application. A secondary goal is to make application
dependencies more explicit. We want the dependencies to contain more information than strong, versioned
names, even though we recognize that we can never capture the full semantic dependencies between two
applications. It is in general impossible to specify the complete dependencies between two applications: these
dependencies can be tied up in the details of the implementation (and even bugs) of each. We rely instead on
the typed structure of Singularity to give us stronger guarantees about the correctness of an update or

Singularity

Design Note

12

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 2

installation. The application manifest packages this type information so the operating system can infer the
effects of adding, modifying and removing files.

1.2. Preliminaries

Before we can state the exact structure and mechanisms related to the application manifest, we first describe
several fundamental assumptions and definitions used in this document

1.2.1. Definitions

 Internal Type: An MSIL type

 External Type: An Exchangeable Type

 Component: An instance of an external or internal type.

 Module: A component containing code. While a module is typically an MSIL assembly, multiple
modules may be packed into a single assembly.

 Module Interface: The set of MSIL types on a module (assembly) marked as public. The module
interfaces includes not only public classes, structs, enums, and interfaces, but also public methods,
properties, fields, and constants. The module interface may include additional information such as
Spec# pre and post conditions and invariants.

 Channel Contract: A machine readable specification of the contract governing the types of message
and allowed exchange patterns on a class of Singularity channels.

 Statement: A channel contract or module interface.

 Resource: Currently a synonym for component. Although there are resources (e.g. hardware devices)
that are not typed collections of bits on the system, we still describe them with an application manifest
generated by a device driver or a plug-and-play system.

 Public Component: A component visible to some component outside the current application.

 Private Component: A component visible to no components outside the current application.

 Application Surface: The set of all channel contracts either imported or exported by the application.

 Metadata: Data describing the structure of code or other data; any public, externally-typed data.
Metadata is public because it is meant to be visible to more than one application. Metadata is
externally typed because the data is to be read by other applications’ processes, and thus can only be
read through a channel.

 Namespace: A function that maps a string into a resource.

1.2.2. Namespaces

Since a namespace maps a string into a resource, the same string may produce different resources in two
different namespaces. For example, the string “Word” in the application configuration name space maps to the
settings for the Word application, whereas the same string in the file system maps to a directory contain the
modules for the Word application. We assume that in Singularity there is a single, global namespace that
aggregates all other namespaces into a hierarchy. For example, the filesystem is a subnamespace of this
global namespace, as is the Application namespace used to find programs. Each application is created with its
own protected namespace, over which it has complete control.

2. The Manifest

Every application is composed entirely of resources and dependencies between these resources. The
application manifest describes the resources contained in the application and their dependencies. In this
section we describe the components of a manifest in Singularity.

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 3

2.1. Resources

In Singularity every resource is contained in a namespace, and further that every resource is typed, at least in
some internal type system. There are three fundamental classes of resources: code, data, and namespaces.
Although it is clear that there is no distinction between code and data in the abstract, most apps will only treat a
given set of bits as one of code or data (for instance, Notepad treats a JScript file as data, whereas WScript
treats it as code. Furthermore, the conversion from data to code should be carefully controlled. If an application
is ever going to treat a resource as code, we require that it specify in the manifest that the resource is a code
resource. Before installation, all code resources are subject to system verification to prove their validity.

For all resource statements in the application manifest, we assume the existence of a security policy language
that can be used to specify policies such as trust relationships for each resource in the manifest. The exact form
of this policy language remains to be decided by the security team.

2.1.1. Code

The application manifest divides code into two groups of modules: modules that form the root of a new process,
and modules that do not. We refer to the former as a process module and the latter as a library module. An
application manifest must contain at least one process component, but can contain an unbounded number of
process modules, one for each process created within the application. Historically, process modules and library
modules are called EXEs and DLLs respectively, and have differing invocation interfaces. In Singularity,
process modules and library modules have the same invocation interface, only their role in the application
manifest that makes them distinct.

Each part of the application manifest that refers to a process or library module makes statements about the
external surface and internal structure of that module. The external surface includes the module interface
exposed within the process and the channels exposed outside the process. Statements about the internal
structure of the module typical name the module with specificity, such as fully qualified name, a version, and a
secure hash of the module. The naming may include a level of indirection so that a publisher of a manifest may
provide a subsequent release incorporating a bug fix. Naming may also be modulated by system policy.

For example, a process module named floppy.sys that is used to construct the process in Singularity that runs
the floppy disk driver will have an external interface of channel contracts and endpoints. Similarly, a library
module will have an external interface of MSIL type information with Spec# annotations. The Spec#
annotations and channel contracts allow system to check for not just naming conformance, but also semantic
conformance, when verifying compatibility and resolving dependencies.

2.1.2. Data

Data is any component that cannot be interpreted as a module. For example, metadata is public, externally-
typed data, as discussed above, and an element of metadata will show up in an implementation of the
application manifest as a named value with a type specification (along with a namespace that contains it, as will
be discussed below).

The application manifest also supports the concept of a data collection. A collection may be ordered or
unordered. It may also specify that the members of the collection must satisfy some statement. Ordered
collections further support the concepts of a first and last element, as well as relative ordering between two
elements. Its elements can either be constrained to a fixed set specified at application install time or not.

2.1.3. Namespaces

In the application manifest, names are mappings either to an instance of a type or to another namespace (which
can be thought of as an instance of the type namespace). As noted in section 1.2.2, there is a global
namespace in Singularity, and all other namespaces are contained in that namespace. We assume the
existence in the global namespace of certain well-known namespaces. One is the Filesystem, under which a
filesystem structure can be stored. Another top-level namespace is the Application namespace, under which
each application’s namespace is constructed upon installation. This namespace will contain the private and
public names for the application.

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 4

2.2. Dependencies

We represent all dependencies by the requires relation. This relation expresses a typed dependency of one
component on another. In the application manifest, this relation is typed with a contract (for resources, like other
processes or metadata, accessed through external types) or Spec# statements (for resources, like libraries,
accessed through internal types).

The supplies relation is the inverse of the requires relation; each resource specified in an application manifest
provides a channel contract (for resources accessed from another process) or a set of module interface (for
resources accessed within a process). The set of externally-typed supplies dependencies forms the surface of
the application.

Requirements may be optional. An example of an optional requirement is the existence of a printer in Word.
Word would prefer to have a printer, but documents can be can be created and edited without one. Since these
optional requirements have no bearing on the correctness of the application, their presence in the manifest is
only to help the operating system; a correct application will only access resources that it has listed in the
manifest. The operating system will enforce manifest declared resource access.

2.2.1. Uses of Relations

The main use for the requires and supplies relations is to check that the correct resources are available for a
given application when it runs. The current troubles in the application space are caused by not having enough
semantic information to determine whether or not to install a given resource. These questions cannot simply be
solved by version numbers and side-by-side installations of different files, because updates may, for example,
change the statements associated with a given resource. During installation, update, and uninstall we must
check that the application is still consistent and that all other applications that depend on this particular resource
still have their dependencies satisfied.

3. Uses of the Application Manifest

We have developed a XML-based language, called dasl (the Declarative Application Specification Language)
(pronounced “dazzle”) that allows us to give a declarative definition of an application. In this section, we present
this language and the conversion of a simple example taken from the componentization in the lab01 NT source
tree.

3.1. Dasl elements

 <public>: This element contains all the public components of the application.

 <private>: This element contains all the private components of the application.

 <code>: This element names a module in a namespace. It also contains any number of

<requires> elements that specify the requirements of this module. This element must contain a

namespace attribute to specify the namespace in which it lives, and it must contain a name element

that names this module uniquely in this namespace.

o The attribute main means that this is a process component and the root of the process tree for

this application. When the application is started in Singularity, this process will be created and
allowed to create other processes as needed.

o The attribute process means that this is a process component.

o The attribute sealed on a main or process component

 <data>: This element represent a data component in a namespace. This element must contain a

namespace attribute to specify the namespace in which it lives, and it must contain a name attribute to

uniquely name this component in its namespace. If it is contained in a <collection>, then it may

have <requires> elements that state its positioning requirements in that collection.

 <namespace>: This element represents a namespace and is either contained in another

<namespace> element or has an explicit parent attribute that names its parent namespace.

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 5

 <requires>: This element represents a requirement as described in section 2.2.

o The attribute optional may be true or false. The default is false.

o If this element is contained in a <data> element in an ordered <collection>, then it may

have the attribute before or after. These attributes say that this required item must come

before or after, respectively, the containing <data> element in this collection.

o If this element is contained in a <data> element in an ordered <collection>, then it may

have the attribute first or last. These attributes say that this required item must come

first or last, respectively, in the collection. The first attribute is analogous to a before

all. The last attribute is analogous to an after all.

 <collection>: A collection may take the place of any data item. Each collection has <data>

elements as children. It must contain a namespace attribute that says where in the namespace this

component lives. It also has a name attribute that specifies the name of this collection. Since the

application manifest is entirely declarative there are only a few possible attributes.

o The attribute complete may be either true or false. If it is true, then the list of <data>

elements is the complete list of possible elements in this collection. It will both replace any
(optional) collection or data element in its place in the namespace, and will not allow other

applications to add new entries to the list. If it is false, then the <data> elements will be

added to any collection that might already be using this place in the namespace (if possible),
and other elements may be added by other applications, subject to any constraints imposed by

the <requires> tags in each <data> element, and subject to the type attribute below, if

there is one.

o The attribute type contains a statement that specifies what type of data components are

allowed in this collection.

o The attribute ordered states whether or not this collection is ordered.

3.2. Install

3.2.1. Examples

The simplest example of all is notepad, which has only one file, and a very simple set of dependencies and
namespaces. We have, however, compared our set of resource specifications with that of the Windows
Installer XML (WiX) toolkit. This toolkit is currently used inside Microsoft and was published recently on
SourceForge (http://wix.sourceforge.net). It allows the specification of application installation information in an
XML format that is then compiled to an MSI. We have found that every tag in WiX that corresponds to a
resource has a reasonable correlate inside dasl. We have also found that all the actions in WiX can be
deduced from the dasl specification along with the types of the resources and their dependencies as specified in
our XML format. Since dependencies are currently mostly implicit in Windows, we do not have enough
information to write a complete dasl specification of Notepad, but the following shows a full conversion of the
CMI manifest.

3.2.1.1. Notepad

<?xml version="1.0" ?>

<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="dasl.xsd"

 identity="Notepad">

 <public>

 <data namespace="Notepad" name="DefaultFont"

 type="external:string" />

 </public>

 <private>

 <code namespace="Notepad" main="true"

 name="notepad.exe" type="version=1.0">

 <requires namespace="Applications" name="Windows Shell"

http://wix.sourceforge.net/

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 6

 type="application"/>

 </code>

 <data namespace="Notepad/Settings/Font"

 name="Name" type="external:string" value="Arial" />

 <data namespace="Notepad/Settings/Font"

 name="Size" type="external:int" value="10" />

 <namespace name="Settings" parent="Notepad">

 <namespace name="Font"/>

 </namespace>

 </private>

</application>

3.3. Update

An update to an application simply takes the form of additions and removals of resources and dependencies.
The installer then needs to check that the new state of the namespace tree still allows all applications present to
function correctly according to their type specifications. We support update via dasl, and in this subsection we
provide an example of what an update to notepad might look like.

3.3.1. Dasl again

In a dasl update, the most important result is that the final state of the application after the update should
correspond exactly to what is given in the update manifest. In the spirit of a declarative application manifest
language, we do not provide operations to explicitly add or remove elements. Instead, an update consists of a
new specification of what the state of the application should look like after the update has occurred. We allow
the installer to deduce the appropriate changes to get the application into the correct state.

3.3.2. Examples

We can imagine the following (admittedly contrived) update to notepad where a new surface dll was added and
the namespace was made public.

3.3.2.1. Notepad

<?xml version="1.0" ?>

<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="dasl.xsd"

 identity="Notepad">

 <public>

 <data namespace="Notepad" name="DefaultFont"

 type="external:string" />

 <code namespace="Notepad" name="notepadCtl.dll"

 type="notepadContract"/>

 <requires namespace="Kernel" name="component.dll"

 type="aContract"/>

 </code>

 <namespace name="Settings" parent="Notepad">

 <namespace name="Font"/>

 </namespace>

 </public>

 <private>

 <code namespace="Notepad" main="true" name="notepad.exe"

 type="version=1.0">

 <requires namespace="Applications" name=" Windows Shell"

 type="application"/>

 </code>

 <data namespace="Notepad/Settings/Font" name="Name"

 type="external:string" value="Arial" />

 <data namespace="Notepad/Settings/Font" name="Size"

 type="external:int" value="10" />

 </private>

</application>

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 7

3.4. Uninstall

To uninstall an application using dasl, we provide an application manifest that matches exactly an installed
application. Once dasl confirms that this application is installed, it uses the declarative statement of what exists
in the application to remove all of its elements. If any applications are installed that are using the same
namespaces and name/value pairs as this application, these namespaces and name/value pairs are not
removed. Since we know that the state of the namespaces after install is consistent with all installed
applications, it is safe to leave the namespaces and name/value pairs as they are; in fact, we know that they are
still required.

3.5. Invocation

Given the above application manifest, we can instantiate applications in Singularity that match a particular
installed manifest. The installed manifests all live in some manifest namespace. When a user requests that an
application be run, the appropriate manifest is chosen by application identity from the set of manifests. This
manifest contains the information about the process that will be started by the runtime, since we require that

there be exactly one <code> element with a main attribute. The system then instantiates the main process

using the code object with the main attribute, which runs as the first node in the process tree. The system can

dynamically ensure that the application follows exactly the resource dependencies in its manifest, by checking
that it only uses resources it claims to require.

It is clear that, as it is started, each process can be marked with the application instance identifier with which it is
associated. Then the system can determine the application with which a given process is associated simply by
examining the process itself.

4. The Intermediate Application Manifest

4.1. Motivation and Goals

In order to facilitate the rapid identification of manifest requirements, Singularity currently uses a less general
manifest format. This format satisfies the following goals:

4.1.1. Simple Subtree Extraction with Guaranteed Structure

The intermediate format allows for tags with specific names, such as “driverCategory,” “ioPortRange,” and “imp”.
Furthermore, the current manifest generation tool, mkmani, guarantees a particular structure to these tags. As
a result, the Kernel can use a simple Xml reader to extract tags without extensive error-handling (for example, it
can assume that there will be exactly one “propertySet” tag).

4.1.2. Support for Install-Time Configuration

Ultimately, the content of an application manifest will change upon installation. Certain values may be set, such
as default parameters, app locations, and endpoint names. Additionally, the installed manifest will store
information explaining what MSIL assemblies were shipped as an application, how they were verified, and what
cached native-code file ought to be run in place of the MSIL assemblies.

As Singularity currently lacks an installer, the structure of this information is not well-defined, and little of this
information is even known. Consequently, we require a flexible format for representing the existing pieces of
this information in a manner that is accessible in a Singularity system that lacks an installer.

4.1.3. Dasl Compatibility

Despite the support for programmer-defined names for tags and attributes, the intermediate application manifest
is ultimately compatible with dasl. We expect that upon completion of a dasl parser and schema validator for
Singularity, the conversion from existing manifests to dasl manifests will be straightforward and simple.

4.2. Structure

The intermediate application manifest (IAM) format consists of 6 blocks of information. Their format, semantics,
and use are detailed below:

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 8

4.2.1. The <manifest> Tree

To distinguish from the dasl format, the root tag of the IAM format is named “manifest”. This tag is the parent of
the remaining trees described in this section.

<?xml version="1.0" encoding="us-ascii"?>

<manifest>

 <application> ... </application>

 <assemblies> ... </assemblies>

 <signature> ... </signature>

 <propertySet> ... </propertySet>

 <category> ... </category>

 <driverCategory> ... </driverCategory>

</manifest>

4.2.2. The <application> Tree

The <application> tree mirrors the dasl <application> tag:

 <application identity="DiskDrive">

 <properties>

 <code main="True" path="DiskDrive.x86" />

 </properties>

 </application>

The application “identity” property provides a public name for the application. This field currently names the
subtree of the /init namespace where the application and its manifest reside.

The code “main” property is not used at this time, and is set to “True” in all manifests.

The code “path” property names the .x86 file that Singularity is to run. This property is currently generated at
compile time during the creation of a manifest. In order to use this field, it is then updated at run time to reflect
the full name of the .x86 file, currently /init/identity/path. This property should not ultimately be set by the
compiler. Instead, it should be set during application installation, as the native code file will not be created until
this time.

4.2.3. The <assemblies> Tree

Anticipating the day in which Singularity verifies and installs applications, the IAM includes a list of all the
assemblies used by the application. Bartok will use these files to create the native-code .x86 file that Singularity
executes.

 <assemblies>

 <assembly filename="DiskDrive.exe" />

 <assembly filename="Namespace.Contracts.dll" />

 <assembly filename="Io.Contracts.dll" />

 <assembly filename="Corlibsg.dll" />

 <assembly filename="Singularity.V1.ill" />

 <assembly filename="Corlib.dll" />

 <assembly filename="System.Compiler.Runtime.dll" />

 <assembly filename="Microsoft.SingSharp.Runtime.dll" />

 <assembly filename="ILHelpers.dll" />

 </assemblies>

These entries are not complete, lacking the full assembly information for each entry.

4.2.4. The <signature> Tree

The signature tree is currently empty.

 <signature />

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 9

4.2.5. The <propertySet> Tree

The propertySet tree is a rough approximation of the configuration that is constant for all executions of an
application. Currently, this tree holds five types of entries: endpoints, strings, integers, lists of strings, and list of
integers:

 <propertySet>

 <endpoint> ... </endpoint>

 <extension> ... </extension>

 <serviceProvider> ... </serviceProvider>

 <configString name="foo" optional="False" default="bar" />

 <configInt name="MaxThreads" optional="False" value="16" />

 <configStringList name="hosts" optional="False" />

 <configIntList name="ports" optional="False" />

 </propertySet>

For each of the four tags prefixed with “config,” the role of the tag is to identify a value or set of values. The
properties of the tag specify a name for each field (name), whether a configuration field may be skipped or not
(optional), and an optional default value of the property (value). Default values for a list will be represented by
adding children to the configStringList or configIntList tag.

Singularity currently does not use these elements of the propertySet. They exist strictly to initiate analysis of
what configuration parameters an application needs, and how these parameters can be declared and provided
to an application.

Discussion of the three endpoint tags is deferred until section 4.2.7.

4.2.6. The <category> Tree

A manifest may hold multiple category trees. Each tree receives a name, so that an application can be invoked
in one of many roles, with the configuration for each role being declared statically.

 <category name="DefaultMode">

 <configString name="Title" optional="True" value="Play" />

 </category>

A category tag can hold any child that is legal for a propertySet. Ideally, every application should have at least
one category, with one category specified as the default. This is not currently implemented in the metadata, as
categories are not currently used by Singularity. The “name” of a category enables the application invoker to
specify uniquely which category he wishes to instantiate.

4.2.7. The <driverCategory> Tree

Strictly speaking, the driverCategory is a descendent of the category. It identifies that an application can be
invoked as a device driver, and specifies the exact and complete set of resources through which the application
will interact with the outside world. An application can declare multiple driverCategories.

 <driverCategory>

 <device signature="/ide/controller" />

 <ioIrqRange baseAddress="14" rangeLength="1" Shared="True" />

 <ioDmaRange baseAddress="496" rangeLength="2" Shared="True" />

 <ioMemoryRange baseAddress="1012" rangeLength="2" Readable="False" />

 <ioPortRange baseAddress="65440" rangeLength="2" Writable="True" />

 <region />

 <extension> ... </extension>

 <serviceProvider> ... </serviceProvider>

 <endpoint> ... </endpoint>

 </driverCategory>

The entries in the driverCategory tree fall into three broad categories:

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 10

4.2.7.1. Device Description

If an application is a device driver for a hardware device, it must declare all of the device signatures it is capable
of serving. This is accomplished through the device tag. The required property of this tag, “signature,” identifies
the prefix of the signature of a device that the driver can serve.

In addition, a device signature may include the tag “CreateIfAbsent=True”. This tag is specifically intended to
address a quirk in the way a Pnp bus enumerates devices. Under limited conditions (which currently appear
only for Singularity on the VirtualPC), objects for a Pci bus’s resources won’t be created during enumeration.
This tag indicates that for this device, such behavior is acceptable and the resource manager should manually
create those resources using the default values from the metadata.

4.2.7.2. Io Resource Requirement Declarations

An instance of a device driver serves a single device whose signature matches the prefix specified by the
device description tag. Singularity also performs a simple sanity check by ensuring that device metadata
matches the set of dynamic hardware resources identified by device enumeration. In addition, the driver may
specify other fixed hardware resources it needs in order to operate properly. Further details are available in
SDN 24.

4.2.7.2.1. Tags

There are four basic Io resource tags, ioIrqRange, ioDmaRange, ioMemoryRange, and ioPortRange. These
four tags correspond to a device driver using ranges of irqs, dma channels, memory, and ports. For each of
these tags, there are two required properties, baseAddress and rangeLength. In addition, there are two optional
parameters, Fixed and Shared. Both of these default to false unless they are specified as being “True”.

The ioMemoryRange and ioPortRange tags also support properties to limit their accessibility. The tags
AllowRead and AllowWrite default to “True” unless they are specified as being false.

There is a fifth Io resource tag, used to identify special memory resources for a device driver. This tag, “region,”
has three attributes to specify restrictions on the types of memory regions to be allocated. The attributes are
addressing, alignment, and size.

4.2.7.3. Endpoint Requirement Declarations

There are three endpoint tags, “extension”, “serviceProvider”, and “endpoint.” These tags differ only in name,
and so in the interests of brevity only “endpoint” is discussed here. All three tags are valid children of
propertySet, category, and driverCategory tags:

<endpoint startStateId="3"

 contractName="Microsoft.Singularity.Io.VolumeManagerContract"

 endpointEnd="Imp"

 assembly="Io.Contracts"

 version="0.0.0.0"

 culture="neutral"

 publicKeyToken="null">

 <imp>

 <inherit name="Microsoft.Singularity.Channels.Endpoint" />

 <inherit name="Microsoft.Singularity.Io.VolumeManagerContract.Imp" />

 </imp>

 <exp>

 <inherit name="Microsoft.Singularity.Channels.Endpoint" />

 <inherit name="Microsoft.Singularity.Naming.ServiceContract.Exp" />

 <inherit name="Microsoft.Singularity.Io.VolumeManagerContract.Exp" />

 </exp>

</endpoint>

These tags identify to Singularity that the kernel is to bind an endpoint according to system policy prior to
starting an application. In order to do so, the attribute “startStateId” identifies the integer value of the start state
of the contract, the property “contractName” gives the full name of the contract type, and the “imp” and “exp”
trees enumerate the full inheritance hierarchy of each endpoint within the contract. The “endpointEnd” tag
identifies which endpoint is to be given to the application.

S I N G U L A R I T Y T H E A P P L I C A T I O N M A N I F E S T

Copyright © Microsoft Corporation. All Rights Reserved. 11

The remaining fields are properties of the assembly in which the contract is declared. These fields are not
currently used.

