
S I N G U L A R I T Y T E S T I N G

Copyright © Microsoft Corporation. All Rights Reserved. 1

Testing

This design note first describes requirements on the design of Singularity to make it an environment
which supports state-of-the-art testing. It then sketches the architecture of an API which could fulfill these
requirements.

1. Introduction

Testing is a part of the software-development process which consistently has been treated as a stepchild in
computer science. Over decades, academics concerned with correctness of systems have focused on formal
verification techniques, which promise a complete approach to correctness instead of an approximate as it is
provided by testing.

Only in recent years, the gap between verification and testing became smaller, on the one hand because
verification approaches dropped formerly unquestioned requirements like completeness or even soundness, on
the other hand since formal approaches have been more widely applied to testing itself, e.g. in the realm of
model-based testing.

This design note aims at stating requirements on the Singularity design such that it supports the application of
state-of-the-art testing techniques. It then sketches the architecture of the so-called monitoring framework which
can fulfill most of those requirements.

2. Testing and Singularity

In order to understand what is needed in Singularity to support testing, it is useful to elaborate what we actually
mean by testing. In general, we can say that testing is driving a system through several execution scenarios and
checking whether it behaves like expected. In the subsequent sections, we break that down into the problems
domains of test configuration, test definition, and test execution, and analyze the implications for the design of
Singularity.

2.1. Test Configuration

Before we can run any kind of test, the “system-under-test” (SUT) needs to be described, configured and
possibly deployed. The SUT can be a collection of applications, a single application, a process/component, a
class/object, or just a single method. The SUT can run on a single node (machine), or on a network of nodes.

State-of-the-art in test configuration is represented by TTCN-3 – test configuration notation -- and the tools
supporting it. TTCN-3 is a full-fledged programming language with constructs to launch processes over
networks, deploy connections between them, monitor their interaction, etc. TTCN-3 is an ETSI standard
(European Telecommunications Standards Institute) and in rising usage in the European telecommunication
Industry. There is no US match for it.

Singularity

Design Note

15

S I N G U L A R I T Y T E S T I N G

Copyright © Microsoft Corporation. All Rights Reserved. 2

Implications for Singularity Design

Application abstraction should exactly deliver us what we need for dealing with the problem of test configuration.
It should be possible to setup an application manifest which reflects a particular test configuration of a collection
of applications, a single application, a process/component, a class/object, or just a single function.

In particular, application abstraction should be able to setup a configuration for testing where most code comes
from dependencies to other applications, and only some test control code is part of that “pseudo” application
which’s mere purpose is to test other applications.

When using application abstraction for testing, it might be possible that installation, updating, or un-installation
are frequently called by some automated job (we are talking about a bandwidth of >100 installations per
minute). If possible, these operations should be much faster as they are today under “Windows Installer”.

2.2. Test Definition

A test suite defines which execution scenarios shall be tested when tests are executed. Traditionally, test suites
are represented as sequences of inputs to the SUT, but testing of reactive, concurrent systems requires also
considering asynchronous outputs, where the SUT may have the freedom to non-deterministically deliver
different outputs in a given state. This lifts test suites from simple sequences to non-deterministic state
machines, which can be e.g. represented by labeled transition systems or I/O automatons.

The inputs and outputs find in the representation of test suites may be build from messages send over
channels, events like entering/exiting a method call, locking/unlocking a resource, etc. Inputs and outputs are
not just labels, but terms which are built from the vocabulary of the SUT, including names of (potentially internal)
methods, and parameters, given as ground values build from (potentially internal) types of the SUT, as well as
free variables which are going to be bound to entities observed during test execution time.

In today’s praxis of testing, the test suite is actually often given by a program, which encodes the state machine
implicitly. These programs heavily rely on access to the internals of the SUT, which requires them either to be
compiled together with the SUT, or using technologies like reflection to access the internals of the SUT.
Alternatively, an application which is proactively “designed for testing” may explicitly expose hooks for letting the
test engineer access its internals; however, this approach requires foreseeing all the needs to hook into the
SUT, which is not feasible in praxis.

A test suite maybe designed manually, or derived from a test-generation technique, like model-based testing
(MBT). The derivation of a test suite in MBT may happen “on-the-fly”, i.e. interleafed with actual test execution,
or offline. In either case, test derivation in MBT is based on exploring the state space of the model, by
techniques similar to explicit state model-checking or symbolic model-checking. Tools like MSR’s Spec Explorer
allow the underlying model to be given in a C# programming style (actually, Spec#), and directly integrate into
the domain of the SUT (using its types and methods). Exploration is done by execution on top of the CLR in
these tools.

Implications for Singularity Design

Singularity must provide a way to define a test suite referring to internals of the SUT. Looking just at the external
interfaces, are relying on that all necessary test hooks will be explicitly exposed, will not be sufficient (though this
could be a better-then-nothing starting point).

In addition to enumerating methods, fields, channels and so on, it is also necessary to persist data in test suites
(parameters of method calls). This calls eventually for an API similar to that provided by CLR reflection and CLR
serialization. However, the API may be restricted to use for testing and debugging only, and not offered for
meta-programming.

Regarding test derivation, in the long term it should be possible to run exploration and model-checking
techniques for arbitrary MSIL code. A special “backtracking” runtime which includes symbolic computation
should be deployable on top of Singularity’s runtime (such a runtime is in development at MSR). The
backtracking runtime should be able to pass-through some functionality – like garbage collection, kernel calls,
etc. – to the underlying runtime. Whereas this kind of functionality can be relative easily implemented in off-the-
shelf JVMs or CLRs by hooking into the class loader, the design of Singularity currently does not seem to
provide such extensions of the runtime (it would be against the principles of Singularity to provide them).

S I N G U L A R I T Y T E S T I N G

Copyright © Microsoft Corporation. All Rights Reserved. 3

2.3. Test Execution

Test execution means running a test suite in a given test configuration and analyzing and logging the results. It
can be as simple as calling a function in the SUT and checking the return value, and -- in the presence of
reactive, non-deterministic systems -- as complex as running a game strategy which tries to discover the
behavior of the SUT by driving it to certain goal states, repeating the same experiment as long as some (usually
stochastic) criterion is met.

Technically, test execution requires control of the SUT by feeding input to it and observation of the SUT by
awaiting output. As discussed in the previous section, input and output can be messages on channels, as well
as method calls on objects, or certain events like acquiring and releasing resources. Output might arrive in non-
deterministic order and at any time at the test execution engine, which therefore usually buffers the output for
consumption by the testing strategy.

Apart of observing the pure functional behavior as exposed in inputs and outputs, various other means are used
in testing praxis to measure the success of testing. The most common is code coverage, which comes in the
flavors of branch coverage and path coverage. Also, information about data access might be collected, as well
as information about performance and memory usage.

Implications for Singularity Design

In order to execute a test suite, the test execution engine must be able to trigger inputs, i.e. send messages to
(potentially internal) channels, and call methods (on potentially internal) objects. In order to observe output,
there must be a mechanism which triggers notification of the test execution engine upon message arrival,
method calls, and resource allocation. For realizing code coverage, according profiling mechanisms are
needed. As for test definition, this eventually calls for an API as it is provided by CLR reflection (in order to
trigger inputs). In addition, an API which provides the instrumentation of the SUT with probes and watches is
needed.

3. Monitoring Framework

This section sketches a relative simple architecture which would allow realizing the requirements for advanced
testing as sketched above. This is called the monitoring framework. As the name suggests, this framework
could be not only used to realize testing, but also other applications like debuggers and tracing and profiling
tools.

3.1. Basic Model

A monitoring application is a program which monitors other applications (e.g. for the purpose of testing).
Monitoring applications run as normal user processes with particular access rights. They solely communicate
with the kernel to obtain information, subscribe to events, and influence execution of other processes.
Monitoring is thus a service provided on kernel level to processes. The kernel execution itself cannot be
monitored.

3.2. Security Issues

Not every process can be monitored at every point of time. The fact that a process is monitored shall probably
be reflected as a modifier on a process identity which changes dynamically at runtime. The change of identity
reflects that the monitored process can behave differently than contracts have promised. A process should
probably be able to reflect that it is monitored. Some processes might refuse to change their state from non-
monitored to monitored once they started execution, since they might have accumulated confidential data
during non-monitored execution time. Processes might refuse to initiate a communication channel or continue
talking on an existing channel if the channels endpoint is in a monitored process.

3.3. Reflection

Since monitor applications do not know at compilation time about the structure of the programs they monitor,
their needs to be a suitable data representation of this structure. This representation might or might not be
aligned with user-level reflection support added to Singularity.

S I N G U L A R I T Y T E S T I N G

Copyright © Microsoft Corporation. All Rights Reserved. 4

We can break down reflection support into static reflection (which just allows to enumerate the elements of a
program) and dynamic reflection (which allows, at runtime, instrumenting those elements). While it might make
sense to make a distinction here on the level of access rights, it is probably not advisable to provide two different
APIs, since users are already acquainted with reflection APIs from the JVM and the CLR. Therefore it is
suggested to have one common object model for static and dynamic reflection.

The reflection API needs to be able to enumerate the elements which constitute an application: types, fields,
methods, properties, events, contracts and so on. This is supposedly very similar to the standard .NET reflection
API.

In addition to standard reflection which exposes only declarations, they also need to be a way to represent
program points (i.e. code), for installing watches (described later). For example, to monitor enter and exit points
of method calls, or branches for coverage analysis, the program points associated with this code need to be
addressed. It is not yet clear how to represent this information. One way is to expose the MSIL directly, another
is to expose the logical structure (by means of a basic block control graph), and a third is to just enumerate
source locations. In either case, it is crucial from the monitoring perspective that optimizing compilers can
accurately calculate back from the generated code to the program point representation.

3.4. Probes

A probe is a piece of code which can be injected by a monitor application into a monitored process. A probe is
defined by a Sing# statement which is compiled and executed “as is” it would live in the monitored process. The
context of a probe can be process global (attached to a name space), instance based (attached to an object of
a given class), or local (attached to a method). Within each context, the same language rules apply as if the
probe was directly denoted in that context. For example, a probe attached to a method can access all global
state, instance state (if the method is instance based), and local variables which are accessible for code written
in that method.

A probe is not supposed to be able to change the state it accesses, however, for pragmatic reasons it might be
desirable to allow probes to call into arbitrary methods of the process (following the context conditions of Sing#),
which then can indirectly change state. Therefore, it might be more faithful to just assume that probes also can
change state.

A probe is an object which is instantiated in the process in which it is injected. As that, the probe itself can have
some internal state, like for example counters, which can be accessed from its defining statement.

A monitoring process can trigger execution of a probe in the monitored process whenever it has control over
that process (i.e. when the monitored process is suspended). Probes are also used in watches (below) in which
case their execution is triggered automatically.

3.5. Watches

A watch is a probe which is automatically executed when a given program point is hit. The probe’s definition
decides what happens in that case: it can suspend execution of the process, signaling a monitor application
about that fact, or it can just maintain some summarization information defined with the probe, immediately
continuing execution.

Watches, in combination with probes, are the silver bullet of the monitoring framework. They maybe used to
realize observation of method enters and exists, code coverage, tracing, as well as conventional debugging
functionality like breakpoints.

4. Conclusions

Testing and Singularity appear to be antagonistic. The requirements imposed by testing seem to largely
contradict basic design principles of Singularity. This shouldn’t come as a surprise. A test engineer would like to
have full access to internals of implementations, driving and observing their behavior. The ultimate tester is
indeed a hacker which tries to break a system (whether the attack is malicious or not does not matter,
technically). Singularity tries to limit this kind of access.

It is possible to imagine a reduced scenario for testing under Singularity. This scenario would only include
testing on communications observed on channels. Since channels are controlled by the kernel, and

S I N G U L A R I T Y T E S T I N G

Copyright © Microsoft Corporation. All Rights Reserved. 5

communicate a restricted kind of data, interposition for testing could be easily implemented for them. While this
scenario is not very interesting from a practical viewpoint on testing, it might provide a viable first start to install
black-box, conformance testing in Singularity.

