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Bytecode Verifier 

Extensible Static Analysis of Assemblies 

Singularity depends on strong inter-process isolation properties.  The Singularity bytecode verifier 

uses light-weight static analysis to verify these properties for every application installed onto a 

system.  The verifier is designed in a modular way, so that it is easy to extend with new properties to 

check. 

1. Using the Verifier 

The current version of the verifier is checked in as main\base\build\singver.exe to the 

Singularity Source Depot repository.  The setenv script should add this directory to your path when 

run. 

1.1. Paths 

The verifier uses the SINGVER_PATH and SINGVER_CORLIB environment variables to resolve 

references to DLLs and EXEs. 

SINGVER_PATH should contain a semicolon-separated list of filesystem paths that should be 

searched for required assemblies.  If this variable is not set, then the verifier constructs a best-effort 

guess of which paths will be required based on the SINGULARITY_ROOT environment variable set 

by setenv, including the current directory “.”. 

SINGVER_CORLIB should contain the name of the assembly to be used as a replacement for 

mscorlib, the core standard library.  If it is not set, the verifier guesses that it should be corlib, 

which is the correct choice for Singularity applications, but not for the kernel.  sgc output contains 

references to bogus assemblies that should all be treated as aliases for this core library. 

1.2. Running the Verifier 

If you have already run setenv, and you have an sgc-produced assembly myapp.exe in the 

current directory, then you can verify it by running: 

singver myapp 
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singver checks the SINGVER_PATH directories for some EXE or DLL version of the assembly 

you ask it to verify.  If it finds such a version, and if it can verify that that version satisfies the 

properties it is configured to check, you’ll see this happy result: 

Verification succeeded. 

If your code has a bug, or if the verifier just isn’t smart enough to tell that your code is correct, you’ll 

see some error message instead.  To understand what these mean, you’ll probably want to read the 

next section of this SDN.  (Note: In the ideal situation, developers won’t have any need to understand 

error output from the verifier.  This might be important for the present because of bugs in the verifier, 

and because sgc doesn’t yet implement all of the checks that the verifier implements.  Eventually 

sgc should be responsible for providing developers with readable error messages.) 

2. Algorithmic Overview 

The bytecode verifier checks assemblies by performing abstract interpretation on them.  The abstract 

domain consists of state graphs that summarize many possible memory configurations.  To determine 

the abstract effects of instructions, the core part of the verifier queries handlers registered by plug-ins 

that are concerned with different properties that the verifier should check.  Handlers will generally 

have available to them all of the abstract interpretation state relevant to the entities they deal with, but 

they can only indirectly modify that state by generating declarative transformations.   

By running the verifier like this: 

singver 1 myapp 

you set the debug output level to 1 (instead of the default of 0).  The output will trace every step of 

finding a fixed point, printing at each stage the state graph, the transformation to be applied, and other 

information.  Reading this output for progressively more complicated inputs can be helpful for 

understanding how the verifier works. 

2.1. State Graphs by Example 

State graphs are output in a human-readable ASCII format.  In this section, we present some examples 

of graphs written in this way and their logical meanings. 

Here’s the simplest example: 

(local0! => contains{42}) 

This single-node graph corresponds to a state within a method with no parameters and one local 

variable.  That local variable corresponds to the node local0, which has the value 42. 

The exclamation mark indicates that this node isn’t null.  Without the exclamation mark, this graph 

could also describe an empty memory state.  Non-null support of this kind is built into the verifier 

because it affects nearly every kind of specification that we want to generate. 

The content of the variable is given in the form of a directed edge from local0 to 42.  Every edge is 

labeled with a name.  In this case, the label is contains, indicating that the source of the edge 

(local0) is an object that contains the edge target (42).  All edges are injective, which means that a 

node can have at most one outgoing edge per label. 
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(local0! => contains{42}) X (arg0! => contains{null}) 

In this graph, we’ve moved on to multiple local variables.  We have one normal local variable and one 

method argument (arg0).  The current value of the argument is the null pointer.  Notice that the ! for 

arg0 refers to the node itself, not its contents.  In other words, a non-null annotation on the node for a 

variable of pointer type is telling us that this variable always exists, not that it does not contain a null 

pointer. 

The two graph nodes are combined with the tensor operator X, which is lifted from linear logic.  It is a 

generic binary operator over state graphs.  The tensor of graphs G1 and G2 is a graph describing any 

state that can be divided into two disjoint pieces, one of which is described by G1 and the other by G2.  

The tensor operator is the key to efficient, local reasoning about mutable state, because it allows us to 

change one part of a state graph without worry that we’ve “broken” any other part of it, as long as we 

know that we’ve only changed objects found in the subgraph that we focus on. 

 

(arg0! => contains{init0}) X (init0! => contains{$IN.0}) 

Here we see a graph for the entry of a method with a single, by-reference argument.  The special value 

init0 denotes the value of the first argument on entry to the method.  $IN.0 is a variable. Graphs 

with variables can be thought of as standing for any other graphs with specific values substituted 

consistently for the variables. 

 

(arg0! => contains{init0}) X (init0! => own()) 

This is the entry graph for a method with a non-null argument of a tracked type, such as a pointer to a 

rep struct in the ExHeap.  Here we see our first data fact in the form of the own() annotation for 

init0.  Like edges, data facts are associated with graph nodes and have labels.  Data facts are more 

general; they needn’t be injective, and they may take any number of arguments, including zero, as in 

this example.  You can distinguish an edge from a unary data fact in debug output, as edges are 

written with curly braces around their arguments, while data facts use parentheses around theirs. 

 

(arg0! => contains{init0}) X (init0 => own()) 

This graph is almost the same as the last one.  The difference is that we removed the ! from init0, 

which indicates that that node may be null.  A graph with nullable nodes like this is equivalent 

logically to the disjunction of all graphs that express the possibilities of making these nodes non-null 

or removing them from the graph.  To use such an object soundly, a program will need to do some 

runtime non-null testing, which can resolve nullable nodes to one of the mentioned alternatives along 

some execution paths. 
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(arg0! => contains{init0}) X (init0! => own(); state([Ready])) 

This could be the entry graph for a method taking a non-null endpoint parameter.  The endpoint would 

belong to some contract C containing a Ready state, and the argument type would be annotated like 

C.Imp:Ready!.  The notation [Ready] stands for a symbol.  The example shows that nodes can 

contain multiple data facts and edges, and that they are separated by semicolons in debug output. 

 

(arg0! => contains{init0}) X ((init0! => own(); state([Ready])) + 

(init0! => own(); state([Waiting]))) 

This state graph could come up later in the execution of a method that started out as in the previous 

example.  Somehow we have reached a point where the state of the endpoint argument isn’t uniquely 

known: it could be Ready or Waiting.  We introduce the disjunction operator + to express this.  

This is the linear disjunction of linear logic, where a disjunctive graph stands for states that satisfy one 

or the other of the disjuncts. 

There a few important things to note about disjunctions. 

First, we allow disjunctions at arbitrary levels of nesting in state graphs.  This example displays a 

benefit that this brings: we are able to share the arg0 node between the two cases. 

Second, as in linear logic in general, every resource must be fully accounted for.  Adding extra objects 

to a state that satisfied a disjunction-free state graph always breaks that satisfaction relationship, 

barring special cases like nullable nodes.  This means that the nodes mentioned in either branch of a 

disjunctive subgraph of a graph may not be present anywhere else in that graph, though there may be 

edges to them elsewhere. 

2.2. Transformations by Example 

Debug output also contains ASCII representations of the transformations applied at each instruction 

step to model the instruction’s symbolic effect.  Transformations look very similar to state graphs; 

they are also graphs built from tensors and disjunctions, but at their nodes they specify changes to 

edges and data facts instead of whether or not they are present. 

 

(stack0!: contains:_->7) 

This transformation would be applied for a ldc 7 instruction executed while the stack is empty.  It 

describes an effect on a node stack0, the first stack slot.  The transformation node given here says 

that we should add a contains edge from stack0 to 7.  The _ to the left of the arrow indicates 

that we should add a new edge here.  If an edge with this label is already present in the graph, the 

transformation will fail.  This behavior makes sense because we define edges to be injective. 

In general, the verifier models the stack, local variables, and heap in a uniform way, so that effects on 

all of these can be modeled with transformations.  The exception is that it separately tracks the stack 

length and a single type for each active stack slot. 
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(stack0!: contains:%OLD.10->_) 

This similar transformation would be generated for a pop instruction directly after the ldc from the 

previous example.  Here, we want to remove a contains edge, no matter what it points to.  We use 

a unification variable %OLD.10 to express this.  Unlike the variables we introduced before, 

unification variables are only used for pattern matching, and they are printed with initial %s.  Variables 

printed with initial $s stand for persistent objects, and they are the only ones allowed in state graphs. 

 

(stack0!: contains:%PTR->_) X (%PTR: own:()->()) 

This transformation gives the effect of a method void borrow(int* in ExHeap ptr) when  

the stack was empty before pushing the actual parameter.  It removes the contains edge from the 

active stack slot and requires that the old contents of that slot be some pointer that is owned both 

before and after the call. 

 

(stack0!: contains:%IN->$OUT) X (%IN: own:()->_) X ($OUT: own:_->()) 

Here’s a transformation for a similar call to a method int* in ExHeap identity([Claims] 

int* in ExHeap ptr).  The semantics of transformer application are such that it is fine for the 

unification variable %IN to turn out to be the same as $OUT, though this isn’t required.  If this is the 

case, the own capability will be consumed and then recreated harmlessly for a new object.  Notice that 

we use a unification variable for the input object, which should match against any actual value; and a 

regular variable for the output object, which we are treating as a new symbolic object. 

 

(stack0!: contains:%EP->_) X ((%EP: own:()->(); state:([Ready]) -> 

([Waiting])) + (%EP: own:()->(); state:([Other1]) -> ([Other2]))) 

This transformation can model the effect of a method void SendM() of an endpoint whose 

contract allows the message M to transition from state Ready to Waiting or from Other1 to 

Other2.  It uses a disjunctive sub-transformation, which is analogous to a disjunctive subgraph of a 

state graph. 

 

(stack0!: contains:%PTR->_) X (%PTR!: own:()->_; exposed:_->$FIELDS) X 

($FIELDS!: contains:_->$value) X (($FIELDS + 4)!: contains_->$next) X 

($next: own:_->()) 

This transformation expresses the requirements and results of exposing a pointer to a rep struct 

S { int value; S* in ExHeap next; }.  Exposing is performed by calling the Expose 

method of the object to be exposed, so we would use this transformation for such a call.  It consumes 

the pointer from the top stack slot and requires that this point be owned.  If so, it can consume that 

ownership and add an exposed edge to some new symbolic field nodes.  Each of the new fields 
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contains some initial value, and there is also a node for the fresh value of the next field, which has an 

ownership invariant associated with it.  The order of the fields in memory is based on the order in 

which they are declared in the corresponding struct definition.  The verifier must already deal with this 

order for instructions like those to load the fields of a struct onto the stack, so this Expose 

transformation enables uniform handling of both cases. 

2.3. Abstract Interpretation Operations 

The interesting abstract interpretation operations that the verifier uses include: 

 Application. Modifying a state graph to reflect the effect of a transformation.  This 

operation can also fail if the state graph doesn’t match up properly with the 

transformation.  The verifier uses this application operation at every instruction, applying 

a transformation constructed based on queries to the plug-ins. 

 Matching. Checking two state graphs for compatibility by finding an isomorphism 

between their nodes that respects the edges and data facts that are present.  This is used to 

check postconditions at method return points.  The main operational difference from 

application is that the two graphs must match up exactly, with no fields left over, while 

application will leave unmatched state graph nodes unchanged, thanks to linearity.  We 

don’t want to allow such behavior when checking postconditions, because this could 

mask memory leaks and similar errors.  We allow the postcondition, but not the return 

point state graph, to contain unification variables. 

 Subsumption. This is the abstract interpretation lattice less-than-or-equal operator, where 

we want to check that every concrete state described by one state graph is also described 

by another graph.  Subsumption checking is used when a program location is visited 

multiple times and the verifier needs to determine whether it must revisit the following 

instructions.  The abstract interpretation can terminate when every transition from a 

reachable abstract state leads to a program point whose saved state graph subsumes the 

graph active coming out of the source state.  Subsumption is a thin wrapper around 

matching, where we modify the possibly-subsuming graph by replacing all of its normal 

variables with unification variables. 

 Join. This is a standard abstract interpretation join operation which tries to construct the 

most specific state graph that subsumes two argument graphs.  Repeated use of joining is 

used to find a fixed point for a mapping from basic blocks to precondition graphs.  Often 

it’s not clear how to perform join operations that lead to a terminating verifier run while 

still preserving enough information to prove safety.  Because of this, plug-ins can register 

widening hints that give advice on how to handle the combination of different versions of 

a node.  Each hint can suggest merging the nodes into a fresh variable that we know 

nothing about, introducing a disjunction to preserve the distinction between the two 

versions, or give no advice, passing the decision on to the next hint.  The verifier uses the 

first strategy by default, biasing itself towards termination instead of completeness. 

 Merging transformations. When multiple plug-ins generate transformations that apply to 

a node, the verifier needs to merge these transformations soundly.  For this, it uses the 

same basic strategy of finding matching nodes as for the join operation, but for 
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transformations instead of state graphs.  Each node in the resulting transformation has all 

of the edges and data facts of its counterparts in the two input transformations.  Since 

edges are injective, this operation won’t succeed if the two versions of a node specify 

conflicting edges with the same label, though “isomorphic” edges that just differ in 

variable names are supported. 

2.3.1. Matching 

Found at the heart of all of these operations is a procedure for matching the nodes of two graphs.  

There are slight differences in how matching works for different operations, but we’ll present a 

generic matching procedure that should give a good intuition for understanding the operations.  It’s a 

very simple procedure based on following chains of injective edges from known equal nodes. 

We’ll use the algorithm for the actual matching operation to illustrate.  For clarity, we omit some 

details like handling of non-null status.  We’ll omit handling of data facts, and we’ll deal first with 

cases with disjunction-free actual graphs (but possibly disjunctive postconditions). 

The algorithm uses a standard kind of expression unification which builds a map σ from unification 

variables in a postcondition to expressions in the actual graph at a return point: 

unify σ %VAR e = σ[VAR → e] (if σ doesn’t already have a different mapping for VAR) 

unify σ (p1 • p2)(e1 • e2) = unify (unify σ p1 e1) p2 e2 (where • is some binary expression 

operator) 

The unify function can fail if a unification variable would need to be given multiple incompatible 

instantiations, or if the postcondition and actual expressions differ structurally. 

Next, we need a function match_one to perform matching for single nodes.  It takes as input a graph 

G and a node n.  If an appropriate counterpart for n is found in G, then match_one returns G with the 

matched part removed, along with an updated map σ containing any new information learned about 

unification variables.  It’s important to return the updated graph, because we need to be sure at the end 

of matching that no obligations have gone unmatched.  Otherwise, we could be allowing a memory 

leak. 

match_one σ (n => edges)  (n’ => edges’) =  

 If σ(n) ≠ n’, then return None. 

If Dom(edges) ≠ Dom(edges’), then return None. 

 For each label{target} ε edges: 

Consider the corresponding label{target’} ε edges’. 

Set σ to unify σ target target’, or return None if unification fails. 

 Return Some (emp, σ), where emp is the empty graph. 

match_one σ (G1 X G2) n =  

 If match_one σ G1 n = Some (G’, σ’), return Some (G’ X G2, σ’). 

 Otherwise, if match_one σ G2 n = Some (G’, σ’), return Some (G1 X G’, σ’). 
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 Otherwise, return None. 

Now we can use match_one to implement our main algorithm match: 

match σ G (n => edges) = match_one σ G (n => edges) 

match σ G (G1 X G2) = 

 If match σ G G1 ≠ Some (σ’, G’) for some σ’ and G’, then fail. 

 Otherwise, return match σ’ G’ G2. 

match σ G (G1 + G2) = 

 If match σ G G1 = Some (σ’, G’), then return Some (σ’, G’). 

 Otherwise, return match σ G G2. 

To check if graph G matches postcondition P, we call match {} G P and verify that the result is Some 

(σ, emp) for some σ.  This means that the matching succeeded and left no parts of the 

postcondition unmatched.  We consider graphs equivalent based on obvious simplification rules, 

including the fact that emp is a unit value for tensor. 

This version of the algorithm is actually simplified significantly.  It relies critically on the order in 

which nodes are represented in the graphs.  This is because nodes will only be matched when the 

unification map generated in previous steps guarantees that they stand for the same object.  If the steps 

execute in the wrong order, some nodes may go unmatched.  The implementation handles this 

problem by executing match iteratively until either all obligations are discharged or no new parts of 

the postcondition are matched. 

To handle disjunctions in the actual return point graph, we currently use an inefficient but simple 

procedure: we expand the actual graph into a set of disjunction-free graphs that cover all of the 

possible cases, and then we apply match for each one. 

3. Implementation 

3.1. Location 

The implementation of the verifier is rooted at main\base\Windows\Verifier in the 

Singularity Source Depot repository. 

3.2. Dependencies 

The verifier is written with F#, an MSR-developed Caml implementation for .NET, with a home page 

at: 

http://research.microsoft.com/projects/ilx/fsharp.aspx 

It also uses the Abstract IL library for parsing .NET bytecode assemblies: 

http://research.microsoft.com/projects/ilx/absil.aspx 

Both of these are checked into the repository, the compiler executable in 

main\base\build\fsc.exe and library DLLs in main\base\build\fsc\.  You might 

http://research.microsoft.com/projects/ilx/fsharp.aspx
http://research.microsoft.com/projects/ilx/absil.aspx
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want to download the complete packages from the URLs above if you want to modify the verifier in 

Visual Studio or do anything else much beyond using it as a client. 

3.3. Organization 

The verifier source is divided up into modules in the usual ML way.  Most modules have both 

interface and implementation files.  For instance, the Verify module has an interface in 

verify.fsi and an implementation in verify.fs.  Filename pairings with fsi/fs or mli/ml 

extensions indicate this interface/implementation relationship. 

The code is written to be mostly self-documenting, especially in the case of the interfaces.  The types, 

values, and comments found in those files are the best form of “architecture description.” 

Here we list the modules of the verifier in dependency order.  It should be possible to acquaint oneself 

with the architecture by reading the corresponding interface files in this order. 

 

Module Description 

Util Utility functions on lists, maps, sets, and strings. 

Debug Flags to control debug output. 

Ilbind2 Modified version of the Abstract IL Ilbind module, patched to handle 

idiosyncrasies of sgc/Bartok assembly references that don’t reference real 

assemblies. 

Ilin2 Version of Abstract IL Ilin that uses Ilbind2. 

Loader Support for finding assemblies in the filesystem. 

Verify_types Definitions of types used throughout the verifier. 

Types Operations on the types from Verify_types. 

Verify_print Pretty-printing. 

Liveness Simple liveness analysis on MSIL method bodies.  The results are used to forget 

information about dead variables during the analysis, speeding convergence to a 

fixed point. 

Abs Abstract interpretation operations, including widening hint hooks, transformation 

application, abstract state join and subsumption tests, and constructors for 

transformations. 

Register Hooks to register handlers for classes, instructions, formal parameters, return 

values, and method calls. 

Combinators Combinators useful for defining handlers of those types, including a general 

notion of rules and filters, and functions for building handlers from rules. 

Cil Plug-in for the standard semantics of MSIL, essentially implementing a standard 

bytecode verifier. 

Corlib Plug-in for additional standard handlers, including support for runtime type tags, 
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normal out and ref parameters, and tracking constant Boolean values. 

System Plug-in for System.Compiler libraries, currently only including non-null-

checking support. 

Singularity Plug-in for the basic Singularity environment, including a check to see if the 

verifier is running on a Windows assembly or a Singularity assembly. 

Ownership Plug-in for ownership tracking. 

Contract Plug-in for channel operations. 

Rep Plug-in for rep structs. 

Config Initializes all of the plug-ins that we’d like to use. 

Verify Main abstract interpretation engine. 

Test Command-line driver for Verify. 

 


