
S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 1

Service Management Service

A User-Level Service Management

This document describes Service Management Service (SMS) that is in charge of user-level service activities.
Given the dedicated channel between SMS and a service, SMS is able to start, stop and monitor its activity. A
privileged client is also allowed to those operations through SMS.

1. System Overview

Service Management Service (SMS) itself is launched by the kernel at the system boot time and runs as an SIP.
Most of the other services are launched by SMS. It defines two channel contracts for user-level services and
clients. User-level services are registered to SMS by using the system manifest file or through the channel on
the client side. The clients establish the interactions with SMS via the Name Service.

1.1. Features

Service Launcher

Most services are launched by SMS. The services launched by SMS are registered to the registry inside
SMS.

Configurable Boot Process

SMS determines the services launched at the system boot time according to the system-wide manifest file.

Service Channel

SMS provides a channel for a client to control the services under the SMS control.

1.2. Processes and Interactions

Figure 1 shows all the interactions of the system. The rectangles represent SIPs and the arrows represent
channels. SMS has four types of channels total: two for the Name Service, one for a client and one for a
service. The services including the Name Service provide channels for their own services in addition to the
channels for SMS1.

A client connects to SMS through the Name Service. SMS is registered to the Name Service in prior to
accepting the connections from the clients. Also, the other services have to be registered to SMS in advance.
Then, the client can control the services and obtain their status information through SMS.

1
 Current implementation of Name Service has no channels to SMS.

Singularity

Design Note

36

S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 2

Figure 1. Process and Channels around SMS

Figure 2 illustrates the interactions among the kernel, SMS, and services. SMS (depicted SrvMng) consists of
the user-level component and the in-kernel component. The in-kernel SMS plays a role of parsing the
configuration information and creating a process for the user-level SMS. The in-kernel SMS is a component
and has no own threads.

Figure 2. System Components Interactions Overview

SMS

Name

Service

ServiceClientClientClient ServiceService

Kernel-user boundary

kernel
SrvMng

(kernel)
network

file

web

…

SrvMng

(user)

Network

System

File

System

HTTP

Server

config file

IoSystem
Launch drivers &

Volume manager

Launch User-level

Service Manager

Launch initial servers

Establish control channels A privileged

process

e.g. administrators,

health monitoring

The kernel only knows Service Manager.

S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 3

2. Contracts

SMS provides two types of channel contracts. ManagedServiceContract is a contract for services and

ServiceManagementContract is a contract for its clients.

2.1. Managed Service Contract

ManagedServiceContract defines the channel between SMS and services (Figure 3). In addition to the

contracts for its own services, a service is required to implement this contract so that SMS controls its activity.

In ManagedServiceContract, SMS runs as the client of services.

contract ManagedServiceContract {

out message Success();

out message Busy();

in message Knock();

out message Alive();

in message RestartService();

out message ServiceRestarted();

in message StopService();

out message ServiceStopped();

state Start : one {

 Success! -> Ready;

}

state Ready : one {

 Knock? -> Alive! -> Ready;

 RetartService? -> (ServiceRestarted! or Busy!) -> Ready;

 StopService? -> (ServiceStopped! or Busy!);

}

}

Figure 3. Managed Service Contract

A service can send a busy reply upon a restart or stop request. It is used for the case where the server is
running on another channel and cannot disconnect it immediately.

S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 4

2.2. Service Management Contract

ServiceManagementContract defines the channel between SMS and the clients. It inherits

ServiceContract so that SMS is referenced by clients via Directory Service. The default service location in

the Directory Service is /services.

The contract defines five operations. Start, Stop, and Restart are creating and starting a service process,

terminating a service process, and restarting a service process respectively. Knock is used for examining if a

server is alive or not. If the server is running, SMS receives Alive message, otherwise it receives NotAlive

message. A sequence of the enumeration messages shows current running services.

The contract also defines four types or error messages upon its operations. NotFound message represents

that an operation failure due to service inexistence. This message is used when a service is not found either in

a file system or the registry in SMS. PermissionDenied message is replied when a client access to the

specified server is prohibited. OutOfResource message indicates that process creation failed because of lack

of system resources. Busy message is replied if SMS receives a Busy message from the server. Note that, all

the operations don’t always support all error messages because some error messages are inappropriate for
those operations.

public contract ServiceManagementContract : ServiceContract

 {

 public const string ModuleName = "/services";

 out message Success();

 out message NotFound();

 out message PermissionDenied();

 out message OutOfResource();

 out message Busy();

 in message StartService(char[]! in ExHeap name);

 out message AckStartService();

 in message StopService(int pid);

 out message AckStopService();

 in message RestartService(int pid);

 out message AckRestartService();

 in message Knock(char[]! in ExHeap name);

 out message Alive();

S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 5

 out message NotAlive();

 in message BeginEnumeration();

 in message MoveNext();

 in message EndEnumeration();

 out message EnumerationTerminated();

 out message Current(int pid, char []! in ExHeap name);

 ...

3. Components

SMS consists of two contracts and four objects.

3.1. Class ServiceManager

ServiceManager object is the entry point of SMS. It creates Acceptor object and launches the initial servers,
which are described in the system manifest file.

3.2. Class Acceptor and Class ServiceController

Acceptor has a thread that waits for an SMS client connection request on the ServiceProviderContract channel,
which is a channel to the Name Service. When Acceptor accepts the request, it spawns a ServiceController
object. ServiceController is a counterpart of SMS clients; it receives control requests and forwards them to the
running services through Service objects. A ServiceController is stopped and removed when the connection
with the client is lost.

3.3. Class Service

A Service object represents a running service. Basically, a service process starts with creation of a Service
object and stops with finalization of it. This class is constructed in a Factory-like pattern2 to compensate the
immaturity of the design; it is prohibited to create a Service object with the new operator. Service Manager
doesn’t allow duplicating a service process. To enforce this design, Service class provides a static method
NewService and checks the existence of the specified service in the method. To explicitly stop a service,
ReleaseService method is provided.

2
 I don’t know what exactly this pattern is called.

S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 6

Figure 4. SMS Object Diagram. Only essential members appear here.

4. Boot Process

SMS is created and started as an SIP by the kernel (Figure 2). At this stage, the service configuration is given
to SMS. Then SMS launches the servers according to the service configuration. The services are launched in
order from the top of entries to the bottom. Before it moves in to server mode, it registers itself to Name Service
that it has launched in the previous stage.

The service configuration is described in Distro/LegacyPCDistro.xml. A service is described by means of

service directive in serviceConfig directive (Figure 5).

<serviceConfig>

<service name=”...” mode=”managed | unmanaged” />

</serviceConfig>

Figure 5. Service configuration syntax

Currently, the server configuration supports name and mode attributes. The name parameter specifies a

service name. And the mode parameter specifies how the service is started. The current implementation

supports managed and unmanaged mode. The managed mode is default. The unmanaged mode is an

obsolete mode; it is provided for a legacy service that has no ManagedServiceContract channels.

An example of the service configuration is shown below.

<serviceConfig>

ServiceController Reception ServiceManager ServiceControl
* 1 1 1 1 *

Microsoft.Singularity.Services.ServiceManager

Microsoft.Singularity.ServiceManager

-serviceThread
-workerList

-serviceThread

ServiceManagerAcceptorServiceController Service

-serviceList

-name

-process

-endpointStartInitialServices()

ServiceProviderContract ServiceContract

implement

implement

implement

inherit

Microsoft.Singularity.Directory

NewService()

ReleaseService()

ServiceManagementContract ManagedServiceContract

in StartService

in StopService

in Knock

in BeginEnumeration

in StopService

out ServiceStopped

in Knock

out Alive

S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 7

 <service name=”boxwood” mode=”unmanaged” />

 <service name=”iso9660” mode=”managed” />

 <service name=”netstack” />

</serviceConfig>

Figure 6. An example of service configuration

5. Service Start

SMS allows a client to start service processes. This section explains the internal of the service start process.

5.1. Operation

Figure 7 shows the service start operation with no errors.

Client Acceptor

ServiceController

Service

Success

StartService

AckStartService

Connect

Create

AckConnect

NewService()

Return

Figure 7. Communication between objects at a Start Service operation

5.2. Limitation of Placement Policy

Every service process managed by SMS is loaded by means of Binder object in the kernel. The location of a
service depends on Binder’s policy. Therefore, SMS cannot effectively deal with a service that is frequently
loaded and unloaded.

6. Service Termination

SMS can terminate the servers that SMS has created by sending a Stop message or by stopping the process.

Receiving a Stop message through the server channel, it is a server’s responsibility whether it terminates or

not.

S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 8

Client Acceptor

ServiceControl

Service

Success

StopService

AckStopService

StopService

ServiceStopped

ReleaseService()

Connect

Create

AckConnect

Figure 8. Communication between objects at a Stop Service operation

7. Sample Program

7.1. Service Configurator

svconf is a shell command that directly connects to SMS (Figure 9). The command supports all the operations
that SeriviceManagementContract provides3.

> svconf command argument

@start <name> - Start the service process

@stop <pid> - Stop the service process

@restart <pid> - Restart the service process

@list - Show all the services currently available

 @stat <name> - Examine if the service is alive

Figure 9. SMSClient command help

8. Test

Service Manager is tested in terms of wrong operations and scalability.

3
 Restart operation has not been implemented yet.

S I N G U L A R I T Y S E R V I C E M A N A G E M E N T S E R V I C E

Copyright © Microsoft Corporation. All Rights Reserved. 9

8.1. Operational Test

 Test for invalid operations

 Test for multiple single operations

 Test for various timing of operations

 Unanticipated channel closure

9. Future Work

9.1. Access Control

The current implementation allows any kind of clients to control any service under the SMS’s control. This is a
serious security hole. A future release will involve mechanisms to control the accesses from the clients to the
services.

9.2. Service Restart

Although the proposed two contracts define RestartService, current implementations don’t support it at all.

9.3. Service Monitoring

9.3.1. Polling

9.3.2. Exception Handling

9.4. Collaboration with Binder

