// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
//============================================================
//
// Class: Single
//
// Purpose: A wrapper class for the primitive type float.
//
//===========================================================
namespace System
{
using System.Globalization;
using System;
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
//|
[System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)]
public struct Single : IComparable, IFormattable
{
internal float m_value;
//
// Public constants
//
//|
public const float MinValue = (float)-3.40282346638528859e+38;
//|
public const float Epsilon = (float)1.4e-45;
//|
public const float MaxValue = (float)3.40282346638528859e+38;
//|
public const float PositiveInfinity = (float)1.0 / (float)0.0;
//|
public const float NegativeInfinity = (float)-1.0 / (float)0.0;
//|
public const float NaN = (float)0.0 / (float)0.0;
//
// Private constants
//
private const ulong PositiveInfinityAsUInt32 = 0x7f800000;
private const ulong NegativeInfinityAsUInt32 = 0xff800000;
private const ulong ExponentAsUInt32 = 0xff80000;
private const ulong MantissaAsUInt32 = 0x007ffff;
//
// Native Declarations
//
//|
public static bool IsInfinity(float f) {
uint v = BitConverter.SingleToUInt32Bits(f);
return (v == PositiveInfinityAsUInt32 ||
v == NegativeInfinityAsUInt32);
}
//|
public static bool IsPositiveInfinity(float f) {
uint v = BitConverter.SingleToUInt32Bits(f);
return (v == PositiveInfinityAsUInt32);
}
//|
public static bool IsNegativeInfinity(float f) {
uint v = BitConverter.SingleToUInt32Bits(f);
return (v == NegativeInfinityAsUInt32);
}
//|
public int CompareTo(Object value) {
if (value == null) {
return 1;
}
if (value is Single) {
float f = (float)value;
if (m_value < f) return -1;
if (m_value > f) return 1;
if (m_value == f) return 0;
// At least one of the values is NaN.
if (IsNaN(m_value))
return (IsNaN(f) ? 0 : -1);
else // f is NaN.
return 1;
}
throw new ArgumentException ("Arg_MustBeSingle");
}
//|
public override bool Equals(Object obj) {
if (!(obj is Single)) {
return false;
}
float temp = ((Single)obj).m_value;
if (temp == m_value) {
return true;
}
return IsNaN(temp) && IsNaN(m_value);
}
//|
public override int GetHashCode() {
return unchecked((int)BitConverter.SingleToUInt32Bits(m_value));
}
//|
public override String ToString() {
return ToString(null);
}
//|
public String ToString(String format) {
return Number.FormatSingle(m_value, format);
}
//|
public static float Parse(String s) {
return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands);
}
// Parses a float from a String in the given style. If
// a NumberFormatInfo isn't specified, the current culture's
// NumberFormatInfo is assumed.
//
// This method will not throw an OverflowException, but will return
// PositiveInfinity or NegativeInfinity for a number that is too
// large or too small.
//
//|
public static float Parse(String s, NumberStyles style) {
try {
return Number.ParseSingle(s, style);
}
catch (FormatException) {
//If we caught a FormatException, it may be from one of our special strings.
//Check the three with which we're concerned and rethrow if it's not one of
//those strings.
String sTrim = s.Trim();
if (sTrim.Equals(NumberFormatInfo.positiveInfinitySymbol)) {
return PositiveInfinity;
}
if (sTrim.Equals(NumberFormatInfo.negativeInfinitySymbol)) {
return NegativeInfinity;
}
if (sTrim.Equals(NumberFormatInfo.nanSymbol)) {
return NaN;
}
//Rethrow the previous exception;
throw;
}
}
//
// IValue implementation
//
//|
[NoHeapAllocation]
public override TypeCode GetTypeCode()
{
return TypeCode.Single;
}
//
// This is just designed to prevent compiler warnings.
// This field is used from native, but we need to prevent the compiler warnings.
//
#if _DEBUG
private void DontTouchThis() {
m_value = 0;
}
#endif
}
}