//////////////////////////////////////////////////////////////////////////////// // // Microsoft Research Singularity // // Copyright (c) Microsoft Corporation. All rights reserved. // // File: Math.cpp // // Note: // #define LITTL_ENDIAN #include "hal.h" #pragma warning(disable: 4725) ////////////////////////////////////////////////////////////////////////////// // #define IMCW_EM 0x003f // interrupt Exception Masks #define IEM_INVALID 0x0001 // invalid #define IEM_DENORMAL 0x0002 // denormal #define IEM_ZERODIVIDE 0x0004 // zero divide #define IEM_OVERFLOW 0x0008 // overflow #define IEM_UNDERFLOW 0x0010 // underflow #define IEM_PRECISION 0x0020 // precision #define IMCW_RC 0x0c00 // Rounding Control #define IRC_CHOP 0x0c00 // chop #define IRC_UP 0x0800 // up #define IRC_DOWN 0x0400 // down #define IRC_NEAR 0x0000 // near #define ISW_INVALID 0x0001 // invalid #define ISW_DENORMAL 0x0002 // denormal #define ISW_ZERODIVIDE 0x0004 // zero divide #define ISW_OVERFLOW 0x0008 // overflow #define ISW_UNDERFLOW 0x0010 // underflow #define ISW_PRECISION 0x0020 // inexact #define IMCW_PC 0x0300 // Precision Control #define IPC_24 0x0000 // 24 bits #define IPC_53 0x0200 // 53 bits #define IPC_64 0x0300 // 64 bits ////////////////////////////////////////////////////////////////////////////// // #ifdef BIG_ENDIAN // big endian #define D_EXP(x) ((unsigned short *)&(x)) #define D_HI(x) ((unsigned long *)&(x)) #define D_LO(x) ((unsigned long *)&(x)+1) #else #define D_EXP(x) ((unsigned short *)&(x)+3) #define D_HI(x) ((unsigned long *)&(x)+1) #define D_LO(x) ((unsigned long *)&(x)) #endif #define D_BIASM1 0x3fe // off by one to compensate for the implied bit #define MAXEXP 1024 #define MINEXP -1021 // return the int representation of the exponent // if x = .f * 2^n, 0.5<=f<1, return n (unbiased) // e.g. INTEXP(3.0) == 2 #define INTEXP(x) ((signed short)((*D_EXP(x) & 0x7ff0) >> 4) - D_BIASM1) // check for infinity, NAN #define D_ISINF(x) ((*D_HI(x) & 0x7fffffff) == 0x7ff00000 && *D_LO(x) == 0) #define IS_D_SPECIAL(x) ((*D_EXP(x) & 0x7ff0) == 0x7ff0) #define IS_D_NAN(x) (IS_D_SPECIAL(x) && !D_ISINF(x)) #define IS_D_QNAN(x) ((*D_EXP(x) & 0x7ff8) == 0x7ff8) #define IS_D_SNAN(x) ((*D_EXP(x) & 0x7ff8) == 0x7ff0 && \ (*D_HI(x) << 13 || *D_LO(x))) #define IS_D_DENORM(x) ((*D_EXP(x) & 0x7ff0) == 0 && \ (*D_HI(x) << 12 || *D_LO(x))) #define IS_D_INF(x) (*D_HI(x) == 0x7ff00000 && *D_LO(x) == 0) #define IS_D_MINF(x) (*D_HI(x) == 0xfff00000 && *D_LO(x) == 0) /////////////////////////////////////////////////////// Define special values. // typedef union { uint64 lng; float64 dbl; } _dbl; static _dbl _d_pos_inf = { 0x7ff0000000000000 }; // positive infinity static _dbl _d_neg_inf = { 0xfff0000000000000 }; // negative infinity static _dbl _d_ind = { 0xfff8000000000000 }; // real indefinite static _dbl _d_neg_zer = { 0x8000000000000000 }; // negative zero ////////////////////////////////////////////////////////////////////////////// // uint16 g_ClearFp() { __debugbreak(); return 0; } // Doesn't alter any additional registers uint16 g_ControlFp(uint16 newctrl, uint16 mask) { __debugbreak(); return 0; } // Doesn't alter any additional registers void g_RestoreFp(uint16 newctrl) { __debugbreak(); } ////////////////////////////////////////////////////////////////////////////// // static float64 _frnd(float64 v) { __debugbreak(); return 0; } static int32 _ftoi(float64 v) { __debugbreak(); return 0; } static float64 _abs(float64 x) { (*(uint64 *)&x) &= 0x7fffffffffffffff; return x; } static float64 _set_exp(float64 x, int exp) // does not check validity of exp { float64 retval = x; int biased_exp = exp + D_BIASM1; *D_EXP(retval) = (unsigned short) (*D_EXP(x) & 0x800f | (biased_exp << 4)); return retval; } int _get_exp(float64 x) { signed short exp; exp = (signed short)((*D_EXP(x) & 0x7ff0) >> 4); exp -= D_BIASM1; //unbias return (int) exp; } // Provide the mantissa and the exponent of e^x // // Entry: // x : a (non special) float64 precision number // // Exit: // *newexp: the exponent of e^x // return value: the mantissa m of e^x scaled by a factor // (the value of this factor has no significance. // The mantissa can be obtained with _set_exp(m, 0). // // _set_exp(m, *pnewexp) may be used for constructing the final // result, if it is within the representable range. // static inline float64 r_exp_p(float64 z) { static float64 const p0 = 0.249999999999999993e+0; static float64 const p1 = 0.694360001511792852e-2; static float64 const p2 = 0.165203300268279130e-4; return ( (p2 * (z) + p1) * (z) + p0 ); } static inline float64 r_exp_q(float64 z) { static float64 const q0 = 0.500000000000000000e+0; static float64 const q1 = 0.555538666969001188e-1; static float64 const q2 = 0.495862884905441294e-3; return ( (q2 * (z) + q1) * (z) + q0 ); } // These are referenced by the ARM compiler compiling the code below - don't know why // but workaround for now. extern "C" double __imp___muld(double, double) { __debugbreak(); return 0; } extern "C" double __imp___divd(double, double) { __debugbreak(); return 0; } extern "C" double __imp___addd(double, double) { __debugbreak(); return 0; } extern "C" double __imp___negd(double) { __debugbreak(); return 0; } float64 _exphlp(float64 x, int * pnewexp) { static float64 const LN2INV = 1.442695040889634074; // 1/ln(2) static float64 const C1 = 0.693359375000000000; static float64 const C2 = -2.1219444005469058277e-4; float64 xn; float64 g,z,gpz,qz,rg; int n; xn = _frnd(x * LN2INV); n = _ftoi(xn); // assume guard digit is present g = (x - xn * C1) - xn * C2; z = g*g; gpz = g * r_exp_p(z); qz = r_exp_q(z); rg = 0.5 + gpz/(qz-gpz); n++; *pnewexp = _get_exp(rg) + n; return rg; } // // Decompose a number to a normalized mantissa and exponent. // static float64 _decomp(float64 x, int *pexp) { int exp; float64 man; if (x == 0.0) { man = 0.0; exp = 0; } else if (IS_D_DENORM(x)) { int neg; exp = 1 - D_BIASM1; neg = x < 0.0; while((*D_EXP(x) & 0x0010) == 0) { // shift mantissa to the left until bit 52 is 1 (*D_HI(x)) <<= 1; if (*D_LO(x) & 0x80000000) (*D_HI(x)) |= 0x1; (*D_LO(x)) <<= 1; exp--; } (*D_EXP(x)) &= 0xffef; // clear bit 52 if (neg) { (*D_EXP(x)) |= 0x8000; // set sign bit } man = _set_exp(x,0); } else { man = _set_exp(x,0); exp = INTEXP(x); } *pexp = exp; return man; } static bool is_odd_integer(float64 y) { int exp = INTEXP(y); if (exp < 1 || exp > 63) { return false; } return(((*(uint64*)&y) | 0x10000000000000u) << (10 + exp) == 0x8000000000000000); } static bool is_even_integer(float64 y) { int exp = INTEXP(y); if (exp < 1 || exp > 63) { return false; } return (((*(uint64*)&y) | 0x10000000000000u) << (10 + exp) == 0); } ////////////////////////////////////////////////////////////////////////////// float64 Class_System_Math::g_Round(float64 v) { return _frnd(v); } float64 Class_System_Math::g_Sin(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Cos(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Tan(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Atan(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Atan2(float64 v, float64 w) { __debugbreak(); return 0; } float64 Class_System_Math::g_Abs(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Sqrt(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Log(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Log10(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Exp(float64 v) { __debugbreak(); return 0; } // constants for the rational approximation static inline float64 r_sinh_p(float64 f) { static float64 const p0 = -0.35181283430177117881e+6; static float64 const p1 = -0.11563521196851768270e+5; static float64 const p2 = -0.16375798202630751372e+3; static float64 const p3 = -0.78966127417357099479e+0; return (((p3 * (f) + p2) * (f) + p1) * (f) + p0); } static inline float64 r_sinh_q(float64 f) { static float64 const q0 = -0.21108770058106271242e+7; static float64 const q1 = 0.36162723109421836460e+5; static float64 const q2 = -0.27773523119650701667e+3; // q3 = 1 is not used (avoid multiplication by 1) return ((((f) + q2) * (f) + q1) * (f) + q0); } // Compute the hyperbolic sine of a number. // The algorithm (reduction / rational approximation) is // taken from Cody & Waite. float64 Class_System_Math::g_Sinh(float64 v) { static float64 const EPS = 5.16987882845642297e-26; // 2^(-53) / 2 // exp(YBAR) should be close to but less than XMAX // and 1/exp(YBAR) should not underflow static float64 const YBAR = 7.00e2; // WMAX=ln(OVFX)+0.69 (Cody & Waite),omitted LNV, used OVFX instead of BIGX static float64 const WMAX = 1.77514678223345998953e+003; float64 result; if (IS_D_SPECIAL(v)) { if (IS_D_INF(v) || IS_D_MINF(v)) { } else if (IS_D_QNAN(v)) { // TODO: should throw a soft exception. } else if (IS_D_SNAN(v)) { // TODO: should throw a hard exception. } result = v; } else if (v == 0.0) { // no precision exception result = v; } else { bool neg = (v < 0.0); float64 y = _abs(v); if (y > 1.0) { int newexp; if (y > YBAR) { if (y > WMAX) { // result too large, even after scaling result = v * _d_pos_inf.dbl; // TODO should throw hard exception. goto exit; } // // result = exp(y)/2 // result = _exphlp(y, &newexp); newexp --; //divide by 2 if (newexp > MAXEXP) { result = 0.0; //result = _set_exp(result, newexp-IEEE_ADJUST); // TODO should throw hard exception. goto exit; } else { result = _set_exp(result, newexp); } } else { float64 z = _exphlp(y, &newexp); z = _set_exp(z, newexp); result = (z - 1.0/z) / 2.0; } if (neg) { result = -result; } } else { if (y < EPS) { result = v; if (IS_D_DENORM(result)) { result = 0.0; // result = _add_exp(result, IEEE_ADJUST); // TODO should throw hard exception. goto exit; } } else { float64 f = v * v; float64 r = f * (r_sinh_p(f) / r_sinh_q(f)); result = v + v * r; } } } exit: return result; } // Compute the hyperbolic cosine of a number. // The algorithm (reduction / rational approximation) is // taken from Cody & Waite. // float64 Class_System_Math::g_Cosh(float64 v) { // exp(YBAR) should be close to but less than XMAX // and 1/exp(YBAR) should not underflow static float64 const YBAR = 7.00e2; // WMAX=ln(OVFX)+0.69 (Cody & Waite),omitted LNV, used OVFX instead of BIGX static float64 const WMAX = 1.77514678223345998953e+003; float64 result; if (IS_D_SPECIAL(v)) { if (IS_D_INF(v) || IS_D_MINF(v)) { result = _d_pos_inf.dbl; } else if (IS_D_QNAN(v)) { // TODO: should throw a soft exception. result = v; } else { // TODO: should throw a hard exception. result = v; } } else if (v == 0.0) { result = 1.0; } else { float64 y = _abs(v); if (y > YBAR) { if (y > WMAX) { // TODO: should throw a hard exception. result = v; goto exit; } // // result = exp(y)/2 // int newexp; result = _exphlp(y, &newexp); newexp --; //divide by 2 if (newexp > MAXEXP) { // TODO: should throw a hard exception. result = 0.0; //result = _set_exp(result, newexp-IEEE_ADJUST); goto exit; } else { result = _set_exp(result, newexp); } } else { int newexp; float64 z = _exphlp(y, &newexp); z = _set_exp(z, newexp); result = (z + 1.0/z) / 2.0; } // TODO: should throw a hard exception if exactness is required. } exit: return result; } // Compute the hyperbolic tangent of a number. // The algorithm (reduction / rational approximation) is // taken from Cody & Waite. static inline float64 r_tanh(float64 g) { // constants for rational approximation static float64 const p0 = -0.16134119023996228053e+4; static float64 const p1 = -0.99225929672236083313e+2; static float64 const p2 = -0.96437492777225469787e+0; static float64 const q0 = 0.48402357071988688686e+4; static float64 const q1 = 0.22337720718962312926e+4; static float64 const q2 = 0.11274474380534949335e+3; static float64 const q3 = 0.10000000000000000000e+1; return ((((p2 * (g) + p1) * (g) + p0) * (g)) / ((((g) + q2) * (g) + q1) * (g) + q0)); } float64 Class_System_Math::g_Tanh(float64 v) { // constants static float64 const EPS = 5.16987882845642297e-26; // 2^(-53) / 2 static float64 const XBIG = 1.90615474653984960096e+001; // ln(2)(53+2)/2 static float64 const C0 = 0.54930614433405484570; // ln(3)/2 if (IS_D_SPECIAL(v)) { if (IS_D_INF(v)) { v = 1.0; } else if (IS_D_MINF(v)) { v = -1.0; } else if (IS_D_QNAN(v)) { // TODO: should throw a soft exception. } else if (IS_D_SNAN(v)) { // TODO: should throw a hard exception. } } else if (v == 0.0) { // no precision exception } else { bool neg = false; if (v < 0.0) { neg = true; v = -v; } if (v > XBIG) { v = 1; } else if (v > C0) { v = 0.5 - 1.0 / (g_Exp(v+v) + 1.0); v = v + v; } else if (v < EPS) { if (IS_D_DENORM(v)) { // TODO: should throw a heard exception. } } else { v = v + v * r_tanh(v * v); } if (neg) { v = -v; } } return v; } float64 Class_System_Math::g_Acos(float64 v) { __debugbreak(); return 0; } float64 Class_System_Math::g_Asin(float64 v) { __debugbreak(); return 0; } static float64 _fastpow(float64 v, float64 w) { __debugbreak(); return 0; } float64 Class_System_Math::g_Pow(float64 v, float64 w) { float64 result = 0.0; // check for infinity or NAN if (IS_D_SPECIAL(w) || IS_D_SPECIAL(v)) { if (IS_D_INF(w)) { float64 absv = _abs(v); if (absv > 1.0) { result = _d_pos_inf.dbl; } else if (absv < 1.0) { result = 0.0; } else { result = _d_ind.dbl; // TODO: Should throw a hard exception. goto exit; } } else if (IS_D_MINF(w)) { float64 absv = _abs(v); if (absv > 1.0) { result = 0.0; } else if (absv < 1.0) { result = _d_pos_inf.dbl; } else { result = _d_ind.dbl; // TODO: Should throw a hard exception. goto exit; } } else if (IS_D_INF(v)) { if (w > 0.0) { result = _d_pos_inf.dbl; } else if (w < 0.0) { result = 0.0; } else { result = 1.0; } } else if (IS_D_MINF(v)) { if (w > 0.0) { result = is_odd_integer(w) ? _d_neg_inf.dbl : _d_pos_inf.dbl; } else if (w < 0.0) { result = is_odd_integer(w) ? _d_neg_zer.dbl : 0.0; } else { result = 1.0; } } } else if (w == 0.0) { result = 1.0; } else if (v == 0.0) { if (w < 0.0) { // TODO: Should throw a hard exception. result = is_odd_integer(v) ? _d_neg_inf.dbl : _d_pos_inf.dbl; } else { result = is_odd_integer(v) ? w : 0.0; } } else if (v < 0.0) { if (is_odd_integer(w)) { result = - _fastpow(-v, w); } else if (is_even_integer(w)) { result = _fastpow(-v, w); } else { // TODO: Should throw a hard exception. result = v; } } else { result = _fastpow(v, w); } exit: return result; } float64 Class_System_Math::g_Mod(float64 x, float64 y) { float64 result = 0.0; // check for infinity or NAN if (IS_D_SPECIAL(y) || IS_D_SPECIAL(x)) { if (IS_D_SNAN(y) || IS_D_SNAN(x)) { // TODO: Should throw a hard exception. } else if (IS_D_QNAN(y) || IS_D_QNAN(x)) { // TODO: Should throw a soft exception. result = x; } else if (IS_D_INF(x) || IS_D_MINF(x)) { // TODO: Should throw a hard exception. } } else if (y == 0.0) { // TODO: Should throw a hard exception. } else if (x == 0.0) { result = x; } else { const int SCALE = 53; bool neg = false; bool denorm = false; float64 d,ty,fx,fy; int nx, ny, nexp; if (x < 0.0) { result = -x; neg = 1; } else { result = x; } ty = _abs(y); while (result >= ty) { fx = _decomp(result, &nx); fy = _decomp(ty, &ny); if (nx < MINEXP) { // result is a denormalized number denorm = true; nx += SCALE; ny += SCALE; result = _set_exp(fx, nx); ty = _set_exp(fy, ny); } if (fx >= fy) { nexp = nx ; } else { nexp = nx - 1; } d = _set_exp(fy, nexp); result -= d; } if (denorm) { // TODO: should raise only FP_U exception. } if (neg) { result = -result; } } return result; } float64 Class_System_Math::g_Floor(float64 v) { float64 result; // save user fp control word, and set round down. uint16 oldcw = g_ControlFp(IRC_DOWN, IMCW_RC); if (IS_D_SPECIAL(v)) { if (IS_D_QNAN(v)) { // TODO: should throw a soft exception. } else if (IS_D_SNAN(v)) { // TODO: should throw a hard exception. } result = v; } else { result = _frnd(v); // round according to the current rounding mode. } g_RestoreFp(oldcw); return result; } float64 Class_System_Math::g_Ceiling(float64 v) { float64 result; // save user fp control word, and set round up. uint16 oldcw = g_ControlFp(IRC_UP, IMCW_RC); if (IS_D_SPECIAL(v)) { if (IS_D_QNAN(v)) { // TODO: should throw a soft exception. } else if (IS_D_SNAN(v)) { // TODO: should throw a hard exception. } result = v; } else { result = _frnd(v); // round according to the current rounding mode. } g_RestoreFp(oldcw); return result; } // ///////////////////////////////////////////////////////////////// End of File.