Bartok Memory Management

Contents

Overview

Object Model

2.1 Header
2.1.1 VTable.
2.1.2 Sync Block Index L.
2.1.3 String Stateo
2.1.4 Additional Words L.

2.2 Scalarso

2.3 Vectors.

24 ArTays ...

2.5 Strings

Page Management

3.1 PageTable.
3.2 Page Manager
3.3 Memory Manager o

Collected Structures

4.1 Sync Blocks
4.1.1 Collector Processing

4.2 Finalization
4.2.1 Collector Processing

4.3 Weak References
4.3.1 Collector Processing

Compiler Support

5.1 Allocation Sequence
5.2 Write Barrier
5.3 Finalizable Objects
5.4 Thread Local Data
5.5 Static Data Maps L
5.6 Stack Maps

5.7 Object Maps 18
Allocation 20
6.1 Static Allocation 20
6.2 Bootstrap Allocation 20
6.3 Bump Pointer Allocation 20
6.4 Free List Allocation 20
Collection 22
7.1 Root Set 22

7.1.1 StaticData 22

7.1.2 Bootstrap Memory 22

7.1.3 Call Stack 22
7.2 Visitors 23
7.3 Write Barriers 23

7.3.1 Generational Barrier 23
7.4 Semispace Collector L. 24
7.5 Sliding Collector 25
7.6 Adaptive Copying Collector 25
7.7 Mark Sweep Collector 25

List of Figures

1 Components of the Bartok memory management system. . . . 5
2 The layout of an Object. 6
3 The layout of the object header. 6
4 The layout of a Scalar. 8
5 The layout of a Vector. 8
6 The layout of an Array. L. 9
7 ASyncBlock. 13
8 Weak Reference Chain. 15

List of Tables

1 Possible Page Table values 10
2 Semispace location visitor. 24

Revision History

Date

Author

Comments

11-15-2004

Daniel Frampton

Initial Revision

1 Overview

Allocators EnsurePages/ Allocate/F
TryReservePages PageManager ocate/rFree MemoryManager
AllocPool d
VirtualAlloc/
SetOwner Virtu$Free
GetOwner/ A
SetOwner :
AllocHeap PageTable Operating
System
m'
VisitObjects ject Viode
Visit Visitor(s) GcMark/
Collected Structures g Get/Set Header/
VisitObjectFields
SyncBlock Visit
Queue(s) Collection Roots
- < Collector > .
Finalizer Prepare/ Visit Roots StaticData
Forward/
WeakReference Release CallStack

Figure 1: Components of the Bartok memory management system.

2 Object Model

The basic layout of each object is shown in figure 2.

Header Payload

T

Reference

Figure 2: The layout of an Object.

2.1 Header

Each object includes header data that provides a mechanism for storing per
object information such as type and GC state. The makeup of the header
data is shown in Figure 3.

ObjectHeaderPointer 2 ObjectHeaderPointer 1
Additional Words SyncBlock Word VTable Word
String State Reference Stolen Bits

Figure 3: The layout of the object header.

2.1.1 VTable

See class: SYSTEM.VTABLE

The vtable field of an object points an object of type VTABLE. This includes all
type and method information and is used for all virtual method calls and dynamic
type checks.

The VTABLE is also used as a parameter to all allocations, and is queried by the
collector to find object sizes and locate reference fields within objects. Finding

pointer fields is achieved through a pointer tracking word, see Section 5.7 for more
detail.

The VTABLE indicates if an object requires 8-byte alignment. Any object that
requires 8-byte alignment is guaranteed to have the allocator align the start of the
object payload.

During collection, the low order bits of the wvtable field can be used to indicate
some GC state. This requires all reads of the vtable field to apply a bit mask.

2.1.2 Sync Block Index

See class: SYSTEM.SYNCBLOCK

Fach object has room in the header for a sync block index for reasons as detailed
in Section .

2.1.3 String State

See class: SYSTEM.GLOBALIZATION. COMPAREINFO

In order to facilitate efficient string comparison operations, two bits in the header
are stolen. The string state indicates the type of characters that are used in the
string.

2.1.4 Additional Words

See class: SYSTEM.OBJECT

Bartok supports the inclusion of an arbitrary number of additional header words.
These can be used for:

e a reference count for each heap object;
e a profile word to allow per-object runtime profiling; or

e a header based queue to allow enqueuing objects without allocating a buffer.

The number of words is determined by a build time stage control ObjectHeader-
Pointers. Note that the base value of this is 1 to include the word used by the
Sync Block index.

2.2 Scalars

Scalars, both reference types and boxed value types have their fields laid out after
the vtable field. This is shown in Figure 4.

Header Field 0 Field 1 Field N

T

Reference

Figure 4: The layout of a Scalar.

See Section 5.7 for details on how pointers are located within the object at runtime

2.3 Vectors

Vectors are one-dimensional arrays. As this is the common case it is optimized
within the runtime system. Note that vectors are exposed to users of the runtime
as arrays.

Length Element0 | Element1 | ... | Element N

Figure 5: The layout of a Vector.

The layout of a vector is shown in Figure 5. A vector contains a single integer
field, length. After this elements are laid out from index 0 and up.

See Section 5.7 for details on how pointers are located within the vector at runtime

2.4 Arrays

Arrays contain information regarding the number of dimensions (rank), the abso-
lute size of the array (length), and the base and length of each dimension (baseN
lengthN'). This is shown in Figure 6.

Rank Length Base0 | LengthO0 | BaseN |LengthN | Data...

Figure 6: The layout of an Array.

See Section 5.7 for details on how pointers are located within the array at runtime

2.5 Strings

Strings are laid out identically to a vector of characters (See Section 2.3).

3 Page Management

The following sections outline how Bartok manages the explicit management of
memory at the page level.

3.1 Page Table

See class: SYSTEM.GCS.PAGETABLE

The Page Table manages an array of byte entries for every page in the system. This
table is manipulated by the allocator, garbage collector, and indirectly through the
Page Manager. Each page has a byte value corresponding to a value on Table 1.

’ Value \ Meaning

0x00 - 0x03 | Reserved for specific interpretation by the collector,
such as to distinguish generations.

0x04 - 0x07 | Also reserved for specific interpretation by the collec-
tor, but in copying collectors used to represent zombie

pages.
0x08 Allocated Unused Dirty page
0x09 Allocated Unused Clean page

0x0a Unallocated page
0x0b Allocated NonGC page
0x0c - 0x0f | Allocated System page

Table 1: Possible Page Table values

Among other things these tags are used to determine the size of the managed heap,
create the filter for the generational write barrier, and assist visiting objects in the
heap.

3.2 Page Manager

See class: SYSTEM.GCS.PAGEMANAGER

TODO: What about MarkUnusedPages, should that really be called
from anywhere?

10

The page manager is the interface that classes within Bartok use to allocate and
free memory pages. The most important methods within this class are:

EnsurePages This method either returns a chunk of contiguous pages of the
requested size or crashes with an out of memory error.

TryReservePages This method attempts to return a specific chunk of pages.
If the requested pages are not available then this method simply returns
nothing.

ClearPages This method returns pages back to the page manager to allow it
to reconsider them for allocation. The page manager may also release the
pages back to the operating system.

The page manager also includes interfaces to allow the various subsystems of Bar-
tok to indicate memory regions that are occupied by stack, static data, and system

pages.

When the page manager is forced to go to the operating system to allocate new
pages, it allocates a large chunk, returns the number of pages as requested to the
caller, and marks the rest of the pages as allocated but unused.

3.3 Memory Manager

See class: SYSTEM.GCS.MEMORYMANAGER

The memory manager is the interface from within Bartok to the virtual memory
subsystem of the host operating system. The memory manager exposes a simple
interface that includes methods to Allocate and Free chunks of virtual memory.

Memory is allocated and freed from the operating system in large chunks to min-
imize the effect of the call overhead.

The memory manager is also queried to provide information on the total memory
available and the amount available for the managed heap.

11

4 Collected Structures

Several data structures in the Bartok demand collector cooperation in order to
keep them in sync with the object graph. In order to facilitate this process each
collector must provide at which the following three phases can be executed.

Initiation Reference fields are still valid so that object based structures can be
traversed, and references can be reported to the collector to be considered a
root for the collection.!

Resurrection During this phase the collector must allow a caller to query if
object references point to live objects, and also add new objects to the
closure.

Forwarding During this phase the collector must allow a caller to report new
references that are either zeroed or forwarded depending on if the referent
object is live. Note that at this point no further objects can be resurrected.

4.1 Sync Blocks

See class: SYSTEM.SYNCBLOCK

There are several operations that can be performed dynamically on objects at run-
time. These may require associating additional information with certain objects.
The currently identified operations are:

e Locking on an object using the Monitor classes Enter and Exit methods as
exposed by the C# lock syntax;

e Finding the hash-code for an object using GetHashCode; and

e A safe index to identify a Delegate that has been passed to native code.?

I'Note that once a reference is reported to the collector, then it is no longer guaranteed
to be a valid reference.

20Once a SyncBlock index has been passed into native code, the SyncBlock is deemed to
be immortal and is considered a strong reference to the object for purposes of collection.

12

As the operations are relatively infrequent, it was considered wasteful to pre-
allocate space in every object to support these operations. Instead, a single field
is allocated for each object to optionally hold a SyncBlock index into.

FEach individual SyncBlock as shown in Figure 7 contains the following fields.

TODO: Figure

Figure 7: A Sync Block.

Object A reference to the object that the SyncBlock is allocated to. This is only
valid when the SyncBlock is not in the Free status.

Next Free Block The next free index. This is only valid when the SyncBlock is
in the Free status.

Monitor A reference to the monitor instance that has been created for the object
to allow synchronization.

Status The status for this SyncBlock. One of Free, Dying, InUse, Immortal.

When the system is initialized, a SyncBlock table is allocated, and an initial entry
containing 10 SyncBlocks is created.

The SyncBlock manager keeps two different structures that it uses to allocate
SyncBlock indices. Firstly it manages a free-list that is linked through all SyncBlocks
that have been allocated and subsequently reclaimed. Secondly, it maintains the
highest SyncBlock index that has ever been allocated. When a new SyncBlock is
requested and the free-list is empty, then the tables are extended from this highest
index.

When the capacity of an array is reached, a new array twice the size of the previous
array is allocated, and the SyncBlock table is extended. Indices into all tables are

maintained globally. This means that if you are the third entry (index 2) in the
second table, and the first table has length 10, then your SyncBlock index is 12.

4.1.1 Collector Processing

Sync blocks are processed during collection as follows:

13

Initiation Firstly, copy references to SyncBlock data structures into an unman-
aged region of memory so that it can perform work on the tables later in the
collection. Secondly, report any references to objects in sync blocks marked
as immortal to the collector.

Resurrection No processing required.

Forwarding Using the shadow data structures, update references to any objects
that are still alive, and recycle any sync blocks that refer to unreachable
objects.

In the future it would be possible to coalesce several adjacent SyncBlock tables
into a single table at collection time. This would slightly reduce the work required
to look up an entry in the tables.

4.2 Finalization

See class: SYSTEM.FINALIZER

Objects are allowed to define a method to be called when the object becomes
unreachable. When an object with such a method is allocated Bartok adds it to a
candidate queue. When a candidate object becomes unreachable it is resurrected
and placed on a ready queue to have the finalize method executed.

If a finalizable object is registered for finalization multiple times, then the final-
izer is run multiple times. It is possible to remove a finalizable object from the
candidate queue by calling a suppress method.

The life cycle of a finalizable object is therefore:

1. Object registered as a candidate

2. Object becomes unreachable (detected during a collection).
3. Object is resurrected and becomes ready.

4. Object has the finalize method run by the finalization thread.

5. Object is unreachable and collected at a subsequent collection. 3

3Tt is possible for the finalize method to resurrect the object, changing the life cycle.

14

4.2.1 Collector Processing

Finalization processing occurs during collection as follows:

Initiation No processing required.

Resurrection All candidates are processed, and if a candidate has become un-
reachable. Once all candidates have been checked,* any candidate that be-
came unreachable is reported to the collector to be resurrected.

Forwarding No processing required.

4.3 Weak References

See class: SYSTEM.WEAKREFERENCE

Weak references are references to objects that are not supposed to keep the target
object alive. Clearly the collector does still need to process these references to
either null them out if the target object dies, or update the reference if the target
object is moved.

Weak references to finalizable objects can be set to either be nulled when the
object is finalized, or follow it through finalization.

TODO: Figure

Figure 8: Weak Reference Chain.

To create a weak reference a programmer creates a WEAKREFERENCE object.
Weak reference objects are implemented by creating a linked list and inserting new
weak references into the list as they are allocated. This can be seen in Figure 8.
This list is then traversed during collection to perform the appropriate processing.

4Processing proceeds this way to deal with the following case: objects A and B are
both candidates and become unreachable, and A has a reference to B, according to the
spec both A and B’s finalize methods must be run. That is, A being resurrected can not
stop B having its finalize method executed.

15

4.3.1 Collector Processing

Weak references are processed during collection as follows:

Initiation No processing required.

Resurrection At the start of the resurrection phase, all weak references that are
not set to track resurrection are reported to the collector and either nulled
or included to be forwarded.

Forwarding All weak references that are set to track resurrection are reported
to the collector and either nulled or included to be forwarded.

16

5 Compiler Support

5.1 Allocation Sequence

See class: BARTOK.CONVERT.CONVERTMETHOD

At allocation sites within the program, the code generator must translate MSIL al-
location methods into calls to the selected allocator (ALLOCHEAP or ALLOCPOOL).

To allow more efficient allocation, the code generator should be able to inline some
allocation calls.

5.2 Write Barrier

See class: BARTOK.OPT.IR.IRWRITEBARRIER

The runtime is required to inject a write barrier sequence at appropriate writes

during code generation.”

5.3 Finalizable Objects

See class: SYSTEM.FINALIZER
See class: BARTOK.CONVERT.TOMIR

The runtime is required to inject a finalization registration call for any object that
is allocated that requires finalization.

5.4 Thread Local Data

See class: SYSTEM.THREADING.THREAD
See class: SYSTEM.GC.ALLOCHEAP
See class: SYSTEM.GC.ALLocPooL

In order for efficient allocation, each thread holds local allocation state from which
it can allocate objects without requiring any synchronization. This state is exposed

5This is only required for some collectors.

17

through two structs (one for free list allocation, and one for bump pointer alloca-
tion) and included by the runtime in THREAD objects.

5.5 Static Data Maps

TODO: I don’t know how the bitmap is generated.

5.6 Stack Maps

See class: SYSTEM.GCS.CALLSTACK

TODO: I don’t know how the maps are generated.

5.7 Object Maps

See class: SYSTEM.GC.UTIL
See class: BARTOK.CONVERT.POINTERTRACK

Depending on the type of the object different methods are used to locate refer-
ences. For more information on object layout see Section 2. The VTABLE for each
type contains a PointerTracking field. The low order 4 bits of this field indicate
the method of pointer tracking used for the object. The upper 28 bits are used
differently depending on the tracking method:

Sparse Object [0x1] If there are 7 or fewer pointers each with an offset less
than or equal to 15 words, then the offset of each is stored using 4 bits of
the PointerTracking field. This is the preferred method of storing pointer
information.

Dense Object [0x3] If all of an object’s pointer fields are located in the first
28 words of the object, then the top 28 bits of the PointerTracking field are
used as a bitmap for where the fields are located.

Other Object [0x0] In the case none of the optimized methods can be em-
ployed, the high 28 bits of the field contain a reference to a list of word
offsets. The first element of the list is the length, and each subsequent
element holds an offset of a pointer field.

18

Pointer Vector [0x5] If a vector contains elements that are pointers each is
processed in a loop.

Other Vector [0x7] If a vector contains struct elements (which may contain
references) each is processed according to the struct’s VTABLE in a loop.

Pointer Array [0x9] If an array contains elements that are pointers each is
processed in a loop.

Other Array [0xb] If an array contains struct elements (which may contain
references) each is processed according to the struct’s VTABLE in a loop.

String [0xd] Strings contain no references so they do not need to be processed.

19

6 Allocation

6.1 Static Allocation

Statically allocated data is compiled into the executable and loaded into memory
when the application is run. This include type information, the executable code,
and the location of static fields for each class.

6.2 Bootstrap Allocation

See class: SYSTEM.GCS.BOOTSTRAPMEMORY
See class: SYSTEM.GCs.ALL.ocPooL

Before all the necessary classes to allow normal allocation have been initialized,
any data that is required must be allocated into bootstrap memory. Bootstrap
memory is a special case of bump pointer allocation and uses a subset of the code
from ALLocPooL.

Once the system is fully booted, bootstrap memory is closed and further allocations
into it are not permitted. Objects within bootstrap memory are not automatically
traced by the collector, which means that any class that creates bootstrap data
that may point into the managed heap must manually reveal that data to the
collector.

6.3 Bump Pointer Allocation

See class: SYSTEM.GCs.ALLocPooL

6.4 Free List Allocation

See class: SYSTEM.GCS.ALLOCHEAP

pages
blocks

cells

20

global page
global free page
local page
freelist

freeing

allocation

21

7 Collection

7.1 Root Set

For the collection to proceed a set of root objects must be identified. The transitive
closure of the object graph starting from these objects is considered the live set,
and all unreachable objects may be collected.

7.1.1 Static Data

See class: SYSTEM.GCS.STATICDATA

The area of static data that contains the static fields of classes needs to be processed
for any references into the managed heap. This is achieved by walking through
the static data and referring to a bitmap that indicates where pointer words are
located. See Section 5.5 for details of how the bitmap is created.

7.1.2 Bootstrap Memory

See class: SYSTEM.GCS.BOOTSTRAPMEMORY

Bootstrap memory may contain objects that contain references into the managed
heap. Each user of bootstrap memory that allocates such objects is queried to add
these references into the root set.

7.1.3 Call Stack

See class: SYSTEM.GCS.CALLSTACK

All live references within the stack that point into the heap are considered roots
for a collection. The compiler is required to generate stack maps that locate such
references. At this stage to simplify the process of generating the maps all stack
references are considered to be potentially interior references.

Some references in the call stacks may be pinning referents. These references are
presented to the collector separately and are guaranteed not to be moved during
the collection.

22

7.2 Visitors

See class: SYSTEM.GC.PTRVISITOR
See class: SYSTEM.GC.OBJECTVISITOR

Where a part of the system is used for processing values in multiple contexts, the
visitor pattern is used. Bartok currently uses two types of visitors:

Pointer This is used in many places within Bartok to report memory locations
that contain references to the collector, from reporting root references to
visiting fields within individual objects.

Object This is primarily used to facilitate a walk of all objects in the heap. For
example this is used during the sweep phase of the Mark Sweep collector.

7.3 Write Barriers

Write barriers are code sequences that are inserted during compilation to notify
the collector of events of significant for collection.

7.3.1 Generational Barrier

See class: SYSTEM.GC.WRITEBARRIERSSB

The role of a generational barrier is to record pointers that refer to an object
in a younger generation. It is then possible to use these pointers as roots for a
collection of the younger generation without considering any other objects in the
older spaces.

In Bartok this is achieved by looking up and comparing the values that are stored
in the page table (see Section 3.1) for the source and target objects. If the source
object is in an older generation than the target then the location is stored in a
sequential store buffer.

The sequential store buffer (SSB) is created in a fixed number of preallocated
pages (128). If the buffer becomes full a collection is triggered. To support the
removal of duplicates as required by the Sliding collector, the buffer also contains
a Uniquify method that removes duplicates through sorting.

23

7.4 Semispace Collector

See class: SYSTEM.GCS.SEMISPACECOLLECTOR
TODO: Provide more details of Cheney Scan?
TODO: Provide information on pinned and large object processing.

The basic concept of a Semispace collector is to trace through objects in a region
of memory (the from space), copy live objects into another region of memory (the
to space), and then reclaim the original region en masse.

The Semispace Collector in Bartok is a generational collector. The following de-
scription for how collection is performed is the same for both a nursery and full
heap collection in all respects but the selection of the region of zombie pages.

The collection begins by marking all pages in the from space as zombie pages.
References locations are processed as shown in Table 2 starting with the root
references.

VisiT(*location)
object «— *location
IF (object = null)
RETURN
IF ((object.vtable & 0x1) = 0x0)
object.vtable «— (Copry(object) & 0x1)
*location «— (object.vtable & —0x1)

Table 2: Semispace location visitor.

This visitor is not enough to compute the transitive closure. To do this the Semis-
pace collector uses a Cheney scan. This works by maintaining a cursor that moves
through objects copied to the to space one by one, visiting each reference loca-
tion. When the cursor moves past the last object, then all live objects have been
copied and the collection is complete. At this point all of the zombie pages can be
returned to the operating system.

The forward-only version of the visitor, as discussed in Section 4, is very similar
to the normal visitor, but instead of copying and replacing the reference when the
vtable field does not have the low order bit set, it zeroes the location and returns.

24

7.5 Sliding Collector

See class: SYSTEM.GCS.SLIDINGCOLLECTOR

7.6 Adaptive Copying Collector

See class: SYSTEM.GCS.ADAPTIVECOPYINGCOLLECTOR

The adaptive copying collector dynamically switches between using the Sliding and
Semispace collectors. This avoids the additional cost of the Sliding collector most
of the time, but allows the use of a more space efficient collector when memory
usage is high.

The heuristic for determining to use the sliding collector is if the from space is
greater than half of the system’s available physical memory.

7.7 Mark Sweep Collector

See class: SYSTEM.GCS.MARKSWEEPCOLLECTOR

25

