
S I N G U L A R I T Y

Microsoft Research Singularity RDK 1.1 1 03-Mar-2008

Building and Running Singularity

Getting Started

Building and running Singularity is quite simple. The Singularity source code includes all tools needed to build and

boot Singularity. Because Singularity will run in a Virtual PC, creating a test deployment of Singularity is, hopefully,

trivial.

This document describes the steps to build the Singularity source code and boot your Singularity image into Virtual

PC or real hardware. The following sections describe each step.

1. Resources

The Singularity source code contains all of the sources and tools required to build and boot Singularity. However, the

Singularity source code does not contain a source code editor; you must provide these tools yourself. You‟ll need

approximately 250MB of free disk space to install and 1.5GB of free disk space to build Singularity plus all the

applications and 512MB of available RAM.

You may also find it useful to browse the documents on http://research.microsoft.com/os/singularity.

Depending on your institution‟s network policy, you may need to get an IPSec Boundary Exception from your

Network IT team for your PXE boot server. Please ask them for more information.

Questions on building and running Singularity should be sent to singrdkq@microsoft.com.

1.1. Install Debugging Tools for Windows

Singularity supports kernel mode debugging. You should install the latest version of the Debugging Tools for

Windows from http://www.microsoft.com/whdc/devtools/debugging/default.mspx. Accept the default installation

directory choice at install time.

1.2. Install CLR Version 1.1

The Singularity build requires CLR Version 1.1. The version identifier of the CLR version 1.1 is “v1.1.4322”. If

you‟re up to date with Windows Update, you should have it installed. More information can be found at:

http://www.microsoft.com/downloads/details.aspx?familyid=262d25e3-f589-4842-8157-034d1e7cf3a3

1.3. Install Virtual PC

The Singularity build runs on Microsoft Virtual PC 2007, which is available for free download. Information can be

found at: http://www.microsoft.com/windows/downloads/virtualpc.

1.4. Create a Desktop Shortcut and Singularity Build Environment

In the root directory where you installed the RDK is a script configure.cmd. Run the script to create a desktop

shortcut to launch a shell with the configuration required to build Singularity. The shell script base\setenv.cmd

configures the build environment for Singularity. You can either execute it by hand from a command shell:

%ComSpec% /k base\setenv.cmd

http://research.microsoft.com/os/singularity
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/downloads/details.aspx?familyid=262d25e3-f589-4842-8157-034d1e7cf3a3
http://www.microsoft.com/windows/downloads/virtualpc

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 2 03-Mar-2008

Browse the Source

The Singularity depot currently consists of the following directory trees:

 base\Applications – Sources for Singularity user applications, programs with a user interface that

run in their own process.

 base\Boot – Sources for the bootstrap loaders.

 base\Build – The build environment includes the 16-bit C++ compiler for 16-bit bootstrap loader,

the 32-bit C++ compiler for 32-bit bootstrap loader and native components of the HAL, C# compiler,

Bartok MSIL to x86 compiler, linkers, and Singularity specific build and deploy tools such as the

network boot server, bootd.exe.

 base\Contracts – Sources for contracts on channels.

 base\Distro – Target for a full Singularity build. The build process will create a tree in this

directory for the current configuration, and populate it with all executable code needed to boot and run

Singularity.

 base\Drivers – Sources for the Singularity device drivers.

 base\Interfaces – Interface definitions needed to build Singularity.

 base\Kernel – Sources for the Singularity kernel including the components of the CLR base class

libraries included in Singularity and unmanaged (native) code in base\Kernel\Native.

 base\Libraries – Sources for the Singularity libraries, code that gets loaded into multiple

processes.

 base\Services – Sources for Singularity services, programs that run in their own process and

provide services to other programs rather than provide a user interface.

 base\Windows – Sources for build and bootstrapping tools that run on Windows, including the

network boot server in base\Windows\bootd.

 docs – Documents and presentations related to Singularity.

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 3 03-Mar-2008

2. The Singularity Build

2.1. Running a Build

The Singularity RDK uses the MSBuild tool to define build targets. Information on MSBuild may be found at
http://msdn.microsoft.com/msdnmag/issues/06/06/InsideMSBuild/default.aspx.

Start the RDK command-shell shortcut and then type:

msb Distro\Tiny.proj

„msb‟ will build the kernel, volume manager, and shell. The complete list of targets:

 Tiny – Kernel, volume manager, shell.

 Small – „Tiny‟ plus network stack, disk drivers

 BVT – verification suite

 SPECweb99 – SPECweb99 suite and benchmarks

 World – Everything

All the build targets accept a /t:Clean switch that removes all the built files. For example:

msb /t:Clean Distro\Tiny.proj

2.2. The Build Process

The complete build process first builds any custom Singularity tools that run on Windows. In most cases, copies of

these tools are already checked into the base\Build directory. They are built on developers machines to prevent

inadvertent build breaks.

The build process compiles C# module interface definitions (.csi files) into interface load libraries (.ILL files)

using the interface compiler (csic.exe). Interface load libraries (.ILL files) are minimal MSIL assemblies that

can be referenced when compiling C# sources. At run time, the interface load libraries are replaced with

implementation code complete MSIL assemblies (.DLL files). Interface load libraries are a deterministic mechanism

for dealing with circular dependencies between MSIL assemblies.

The build process compiles the C# portions of the Singularity kernel into an MSIL assembly (kernel.exe). It then

builds other C# sources that are linked with the kernel.

After all C# sources have compiled, the build process invokes the Bartok compiler to create native x86 object files

from the MSIL assemblies. Bartok also generates native header files for use by C++ (halclass.h) and x86

assembler (halclass.inc) portions of the kernel.

After the native headers are generated, the build process compiles and links Windows tools that require those headers,

such as the singdbg.dll extension for the Debugging Tools for Windows (windbg.exe).

The build process then compiles and links the 16-bit and 32-bit bootstrap loaders. The PE binary for the 32-bit

bootstrap loader is stripped of headers and converted to a flat text file that is assembled as a data blob into the 16-bit

bootstrap loader. The 16-bit bootstrap loader consists of both x86 assembly and 16-bit C++.

http://msdn.microsoft.com/msdnmag/issues/06/06/InsideMSBuild/default.aspx

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 4 03-Mar-2008

Finally, the C++ and 32-bit C++ assembly code portions of the kernel (in Kernel/Native) are compiled. Object

files generated by Bartok are linked with the x86 portions of the kernel and a time stamp to produce a PE binary,

system.exe. The PE binary is converted into a network bootable image as a minidump file, kernel.dmp.

Singularity uses the Windows minidump format for its boot image. You can examine the minidump by typing

windbg -z Image\obj\kernel.dmp on the command-line. If you open the call stack window in windbg,

you will see that the image is configured to start at the function Hal() from Hal\hal.cpp. Because symbolic

information is annotated in the minidump, windbg can be used to explore the initial system image and to map from

memory addresses in the Singularity log to source code via the ln command.

Output from the build process is stored in obj subdirectories within each source directory. The

base\Kernel\obj directory contains the final bootstrap loader, Singldr, and bootable image, kernel.dmp.

3. The Singularity Boot Process

When booting, the client screen will show the progress of the boot process. Boot typically takes less than 1 minute

from the time the client PC is powered on.

3.1. Supported Boot Devices

3.1.1. Network Boot

The preferred method of booting Singularity is through the network, via the PXE boot process. When booting via this

method, the 16-bit Boot Loader is started directly.

3.1.2. Cd-Rom, FAT Hard Disk, and USB Boot

Booting from a FAT or Joliet file system requires a 512-byte boot sector installed at the beginning of the boot record

for a given device. The role of this boot sector is to locate, load, and execute the 16-bit Boot Loader.

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 5 03-Mar-2008

4. Configuring and Running Singularity on Virtual PC

The build process is optimized for network-booting Singularity on Virtual PC. For information on booting Virtual PC

on real hardware, consult Section 4.

4.1. Configure a Virtual PC

4.1.1. Install Virtual PC

4.1.2. Install the Loopback Network Adapter on the Host OS

WindowsXP – The Virtual PC help explains how to install the loopback network adapter under the index section

“Loopback Adapter, installing on Windows XP” in the Virtual PC help. The instructions are repeated here for your

convenience:

1. To perform this procedure, you must be an Administrator or a member of the Administrators group. As a security
best practice, consider using Run as to run this command.

2. On the host operating system, click Start, point to Settings, click Control Panel, and then double-click Add
Hardware.

3. In the Add Hardware dialog box, click Next.
4. When the Is the hardware connected? dialog box appears, click Yes, I have already connected the hardware,

and then click Next.
5. In the Installed hardware list, click Add a new hardware device and then click Next.
6. In the What do you want the wizard to do? list, click Install the hardware that I manually select from a list

(Advanced), and then click Next.
7. In the Common hardware types list, click Network adapters, and then click Next.
8. In Manufacturer list, click Microsoft
9. In the Network Adapter list, click Microsoft Loopback Adapter, and then click Next twice.
10. If a message about driver signing appears, click Continue Anyway.
11. In the Completing the Add Hardware Wizard dialog box, click Finish.

Vista – Although similar to the above, finding the Add Hardware Wizard is a little different. On the host

operating system, click Start, click Control Panel, click Device Manager, in the Device Manager dialog right

click on the computer name and choose Add legacy hardware.

Continue with step 6 above.

4.1.3. Configure the Host OS Loopback Adapter

Configure the host operating system side of the loopback adapter interface by doing the following:

WindowsXP

1. Navigate to Network Connections on the host operating system.
a. One way to do this is by right-clicking My Network Places, and then click Properties.
b. Another is through Start, Settings, (Control Panel)

2. In the Network Connections window, find the loop back adapter. The loop back adapter will have an auto-
generated connection name like Local Connection 2 and a device name of Microsoft Loopback Adapter.

Right click on this network connection, select Rename and enter Loopback.

3. Right click on it again and select Properties.
4. On the General tab of the Properties dialog box, in the This connection uses the following items list, select

Internet Protocol (TCP/IP), and then click Properties. Be careful not to change the check-boxes as you don’t
want to disable any of the protocols.

5. Select Use the following IP address, enter 10.99.99.1 for the IP address and 255.255.255.0 for the

Subnet mask. Leave the Default Gateway and DNS server fields blank then click OK.

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 6 03-Mar-2008

6. Click the Advanced tab of the Properties dialog box, then click the Settings… button in the Windows Firewall
box. The Windows Firewall dialog box will appear. Select the Exceptions tab.

a. Choose the Add Port… button add UDP port 67 for DHCP and UDP port 69 for TFTP. DHCP and TFTP
are protocols used in the network boot of Singularity.

b. OR, Choose Add program… and point it at <RDK Install Dir>\Microsoft Research\Singularity

RDK\base\build\bootd.exe

7. In the Properties dialog box, click Close.

Vista

1. Navigate to Network Connections on the host operating system. One way to do this is through Start,

Control Panel, Network and Internet, Network and Sharing Center, Manage network connections

(in the left panel).

2. The rest of the steps are the same as above except as noted below…

3. Same.

4. On the Networking tab, choose Properties of Internet Protocol Version 4 (TCP/IPv4).

5. Same

6. Returning back to the Network and Internet dialogue in the Control Panel choose Allow a program

through Windows Firewall under the section Windows Firewall. The Windows Firewall dialog box

will appear at the Exceptions tab.

a. Follow 6a or 6b above.

4.2. Booting Singularity on Virtual PC

To set up a virtual PC for use in working with the RDK, copy the Virtual PC configuration file from

%SINGULARITY_ROOT%\boot\pxe.vmc to %SINGULARITY_ROOT% and give it a new name, e.g.:

 cd %SINGULARITY_ROOT%

 copy boot\pxe.vmc mypc.vmc

After building the RDK by running:

 msb Distros\<distroFile>

The Virtual PC can be started to boot from an ISO image generated during the build using:

 boottest.cmd mypc.vmc

The debugger can be started to connect to the virtual PC using:

 dbg.cmd /pipe

In general, the debugger wants to be started before the Virtual PC to ensure the debugger so the OS can detect the

debugger, otherwise it may fail to recognize the debugger later. This can be performed by combining the two

commands online the command-line:

 dbg.cmd /pipe & boottest.cmd mypc.vmc

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 7 03-Mar-2008

The Virtual PC can be made to network boot by adding a /net argument to the command arguments:

 boottest.cmd /net mypc.vmc

but network booting is significantly slower than booting from an ISO image because the network boot loader TFTPs

each file in the distribution.

4.3. Booting on Virtual PC under Vista

Vista seems to honor domain IPSec for the loopback adapter, whereas XP didn‟t. Thus, to boot Singularity on

VirtualPC under Vista, the machine must have the IPSec boundary exception (see Section 5.2).

Then follow steps above.

4.4. Bootd

Singularity boots over a network using the PXE family of protocols. The DHCP protocol is used to get a network

address. The PXE extensions to DHCP are use to determine the correct image to load. The TFTP protocol is used to

retrieve the OS image. The Singularity build environment includes a simple network boot server which provides all

of these protocols. The DHCP protocol can be disabled when run on a network that already provides DHCP service.

Note that in the case where the boot server communicates through a loopback network to a Virtual PC then the DHCP

protocol should be enabled in bootd.exe.

Unlike other boot servers, bootd.exe does not operate in promiscuous mode; it only responds to boot requests

from MAC addresses listed on the command line. As such, bootd.exe is safe to use on shared public networks.

Bootd.exe can also be configured either to hand out IP addresses via the DHCP protocol, as it does when booting

Virtual PC clients over the Loopback Adapter, or to ignore DHCP requests so clients receive a DHCP address for

another DHCP server, such as a corporate DHCP server. For more information on configuring the bootd.exe, type

“bootd.exe /?” at the command prompt.

When started, bootd.exe displays the registered MAC addresses and bound network interfaces:

As the client boots, bootd.exe displays the DHCP/PXE requests followed by the TFTP requests:

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 8 03-Mar-2008

You might notice that the last TFTP request is aborted. This is the mechanism by which the Singularity bootstrap

loader indicates that it has completed downloading files from bootd.exe. When given the /tftp /e option,

bootd.exe uses this abort to determine that a client has been booted successfully and exits. If the /e option is not

provided, bootd.exe will continue to serve boot requests until terminated with a Ctrl-C.

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 9 03-Mar-2008

5. Configuring and Running Singularity on a PC

5.1. Minimum System Requirements

If you want to boot Singularity onto a physical PC, you need a PC with at least 512MB of RAM and a Pentium II or

later processor. If you want to pursue this, please contact singrdkq@microsoft.com for more information.

5.2. Network Boot

The PC needs a PXE enabled network card with the PXE enabled in the BIOS boot configuration. You‟ll also need to

record the MAC address of the PC. Typically the MAC address is displayed as a 12 hex digit (6 byte) number during

the PXE boot. Alternatively, the MAC address can be detected by looking PXE requests on the output of the

bootd.exe.

In addition to PC hardware, you will need complete network access between your boot server (running bootd.exe)

and your client PC. If your boot server is part of a Windows security domain, your server‟s IPSec policy will need to

be changed or it will refuse to communicate with your client PC on UDP port 4011 which is required for the PXE

boot.

The DetectIpsecPolicy.cmd command in base\build will display the current IPSec policy for a machine.

To act as a boot server, the IPSec policy should be “SecNet Request Security” and not “SecNet Require Security”.

Once your network is configured properly, copy the file build\boothw.cmd and open the new copy in an editor.

The option /m:XX-XX-XX-XX-XX-XX describes the MAC address of your machine. Set the MAC address to the

value you recorded earlier.

At this point, start the kernel debugger and change its configuration to use a direct serial cable instead of a named

pipe:

Then execute your copy of boothw.cmd, and boot the client PC.

Firewire debug requires passing a boot option that can only be done for network boot (boothw.cmd /dhcp

/c:DBG=0) and then invoking boottest.cmd /1394.

mailto:singrdkq@microsoft.com

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 10 03-Mar-2008

5.3. Cd-Rom Boot

The build process creates an ISO image of the built OS. MSBuild emits the name of the ISO in the last stages of a

successful build. The line starts with the string “CD-ROM image:”.

Using an ISO recording tool, such as cdburn.exe, you may now burn this image to a disc and use it to boot your

PC. Alternatively, you may capture this image directly in Virtual PC to boot from it instead of a network device.

6. Stages of the Boot Process

The Singularity boot goes through five distinct phases:

1. 16-bit Boot Loader (singldr.cpp and singldr0.asm in Singldr). The 16-bit boot loader is loaded into the

target machine by PXE or a boot sector. The 16-bit boot loader first requests the boot sequence file

(Singularity\Singboot.ini), and then parses it to determine the filenames comprising the remainder of

the boot image. The first file must be the Singularity minidump image (Kernel.dmp). After the 16-bit boot loader

successfully loads all files listed in Singboot.ini, it gathers configuration information into the bootinfo block,

disables interrupts, enables the MMU, and transfers control and a pointer to the bootinfo block to the 32-bit

boot loader. On the x86-PC architecture, the 16-bit boot loader is the only code to interact with BIOS and the only
code to allocate memory from the low 1MB of the address space.

2. 32-bit Boot Loader (undump.cpp in pxe.com). The 32-bit boot loader copies the various components of the

minidump image to the virtual addresses specified within the image. The 32-bit boot loader then passes control to
the first thread listed in the minidump. By convention, the first minidump thread points to the HAL entry point.

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 11 03-Mar-2008

3. Hardware Adaptation Layer (HAL) (Kernel\Native\hal.cpp). The HAL initializes a base interrupt vector for

early debugging and transfers control to the Kernel at Kernel.Main in Kernel.cs.

4. The Singularity Kernel (Kernel\...). The kernel initializes the managed code runtime, performs the initial

inventory of hardware devices and starts the first device drivers, and then starts the shell process.

5. The Shell (Applications\Shell\Shell.sg). The Singularity shell includes a command line interpreter and a

handful of statically linked test programs. You can list the programs by typing “help” at the prompt.

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 12 03-Mar-2008

7. Debugging Singularity

7.1. Starting the Kernel Debugger

There are two kernel debuggers: KD is a kernel-mode only console based debugger and WinDbg is a graphical user-

mode and kernel-mode debugger. WinDbg can be conveniently invoked by the script dbg.cmd in the build

directory. The script sets up the source code, symbols, and Singularity specific debugger extensions, and then invokes

WinDbg. See section 4.2 for command line syntax.

7.2. How the debugger works

The kernel debugger communicates with a stub in the Singularity HAL via a serial port protocol. The default stub is

wired to communicate using com2 at 115200 bps. In the most common case, where Singularity is run in a Virtual

PC, the com2 port on the Virtual PC is connected to a named pipe on the host OS, \\.\pipe\kd.

The kernel-mode debugging protocol supported by KD and WinDbg stems from the development of Windows. For

Singularity, the appropriate data structures are constructed in the debugger stub (halkd.cpp) to make Singularity

appear like NT. The Bartok compiler generates the appropriate symbols so the debugger is able to step through Sing#

and C# code as if it were C or C++.

7.3. Entering the Debugger

The system maybe broken into at any time by pressing the break button on the WinDbg panel.

Within kernel code, the debugger may be entered by calling DebugStub.Break(). And from user code using

,System.Diagnostics.Debug.Break().

file:\\.\pipe\kd

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 13 03-Mar-2008

7.4. Useful Debugger Commands

The basic debugger buttons and windows should be familiar to anyone who has used an MS debugger before. Rather

than cover the basic buttons and panes, we present a list of techniques that we‟ve found useful working on Singularity.

7.4.1. Evaluate C++ expression (??)

The ?? command evaluates a C++ expression. This provides a fast way to evaluate an expression from the command

prompt (kd>). C# expressions can be evaluated by transmogrifying them into C++ expressions (replace . with ::

when describing members).

7.4.2. Print a static member variable

Static member variables do not show up when debugging sessions, but can be accessed through the command-line

with the ?? command. For instance to print the value of the static variable done in the shell, the interaction would

be:

kd> ?? shell!Shell::done

bool false

7.4.3. Print a string

The debugger is not aware of the C# string representation, but can be displayed in the debugger. Suppose a string

object called message is used in a function. The interaction to display it is:

kd> ?? *message

class String

 { [13] "Hello World!" }

 +0x000 __VFN_table : 0x3d81ec5c

 +0x004 m_arrayLength : 13

 +0x008 m_stringLength : 12

 +0x00c m_firstChar : 72 'H'

The deference operator (*) is required because the string object message is actually a pointer to an object instance.

7.4.4. Print a member of an array

Arrays are represented as objects containing an overall_length field and a values field that the array

elements. The first 3 values are usually visible from the debugger windows. Further values may be viewed with ??.

Suppose a method takes an array of integers called numbers, then elements of the array may viewed as follows:

kd> ?? numbers

class Int32[] * 0x3d539094

kd> ?? *numbers

class Int32[]

 +0x004 overall_length : 5

 +0x008 values : [3] 1

kd> ?? numbers->values[4]

int 7

7.4.5. Copy the stack to clipboard

When problems arise in pieces of code that you are not familiar with it is often handy to send a stack trace to the

author of the code. The call stack window has an icon next to the close window button . Pressing this button

presents the user with a list of options and among these is the option to copy the stack to clipboard. When sending

stack traces it is generally helpful to have all of the options enabled (Raw args, Func info, Source, Addrs …).

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 14 03-Mar-2008

Similar functionality can be achieved via the interactive prompt using k* commands. kv is equivalent to all options

enabled in the WinDbg GUI.

7.4.6. Catch Exceptions in Debugger

The debugger can catch C# exceptions as they are raised. To do this, navigate from the main window through Debug-

>Event Filters and select “Visual C++ exception”. Change the Execution option to “enabled”. The next exception

thrown will cause the debugger to be entered into.

If you need to catch an exception that is thrown during the kernel initialization process then edit dbg.cmd and

remove the –c “g” arguments supplied to WinDbg. This will cause the debugger to be entered into early during the

kernel initialization. An event filter or breakpoint can be added before resuming by pressing the go button (or typing

„g‟ at the interactive command prompt).

7.4.7. Locate source lines and files from addresses

To locate a source file or address from an instruction pointer value use the lsa command at the command prompt.

To locate the file associated with an instruction pointer value, use the lsc command.

7.4.8. Step source line and step instruction at a time

When stepping through code with the debugger it is possible to step on C# instruction at a time by selecting source

mode on the main toolbar . It is possible to step a machine instruction at a time by selecting instruction mode on

the main toolbar . These commands are also available through the interactive command prompt as l+t and l-t

respectively.

7.4.9. Multiprocessor commands

When the debugger is entered on multiprocessor systems, the command prompt changes to indicate the current

processor number, ie:

0: kd>

The current processor may be switch using ~<cpuNumber> , where cpuNumber ranges from 0 to the number of

processors in the system minus one.

7.5. Singularity Debugger Extensions

The debugger framework supports extensions. The extension mechanism primarily exists to allow groups within

product groups to add functionality to the debugger through plugins. Extension commands are prefixed with an

exclamation character (!). The debugger is unaware of extension commands and they must be entered at the

interactive kd prompt in WinDbg.

7.5.1. Extensions Help (!help)

The !help command displays a list of the available extensions with arguments.

7.5.2. Inspect object (!object)

Attempts to cast a memory location into an object and display information about the object.

7.5.3. List threads (!threads)

Lists the threads present in the system. When invoked with –s argument, the stack associated with each thread is also

shown.

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 15 03-Mar-2008

7.5.4. Switch thread (!thread)

The !thread command switches the debugger context to the selected thread. This allows the user to debug specific

threads from within the debugger.

7.5.5. View processes (!procs)

Lists the process objects present in the system.

7.5.6. View log entries (!log)

Singularity provides a fast and lightweight logging facility for application and kernel events. A portion of memory is

used as a circular buffer for logging event entries. Each entry includes the event type, the time in CPU cycles, the

thread id, a descriptive tag, and a user supplied message. Entries in the log are retrieved in a LIFO manner using

!log.

Invoking the log command with –h displays the output and filtering options for the log extension.

The programmer interface to the log is contained under Kernel\Singularity\Tracing.cs.

7.6. Miscellaneous Debugger Tips

7.6.1. The compiler optimized the code away

The Bartok compiler performs whole program optimization optimization. As a result portions of code, variables,

whole methods, may be optimized away. The Bartok command line argument /minopt will greatly reduce the

number of optimizations performed. Setting BARTOK_FLAGS=/minopt at the top of the relevant Makefile will

disable optimization for a particular project component. Alternatively, setting the environment variable

BARTOK_FLAGS will have the same effect. The component directory will require a clean build for the change to

have an effect.

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 16 03-Mar-2008

8. Troubleshooting

There are a few common failures modes when building and running Singularity:

 Symptom: Build process displays “out of memory” on a cl16.exe step.

o Possible cause: Environment variables are too long for cl16.exe.

o Possible solution: Shorten environment variable definitions before calling setenv.cmd.

Common culprits are PATH and INCLUDE.

 Symptom: Build process fails when running sn.exe with the error message, “Failed to generate

strong name key pair. Access is denied.”

o Possible cause: User does not have permission to host keys.

o Possible solution: Add user rights to access the files under:

C:\Documents and Settings\All Users\

 Application Data\Microsoft\Crypto\RSA\MachineKeys

 Symptom: Build fails with the message, “fatal error CS0014: Required file

'alink.dll' could not be found”.

o Possible cause: The C# compiler requires CLR version 1.1 which is not installed.

o Possible solution: Install the CLR version 1.1 (identifier v1.1.4322). For more information see,

http://msdn.microsoft.com/netframework/technologyinfo/howtoget/default.aspx.

 Symptom: The Virtual PC displays the message, “Reboot and Select proper Boot

device”.

o Possible cause: The PXE boot floppy has been removed from Virtual PC.

o Possible solution: Select “Capture Floppy Disk Image…” from “Floppy” menu, then select the

PXE boot floppy image base\boot\pxeboot.vfd.

 Symptom: The Virtual PC waits at the “Microsoft Windows Remote Installation Boot Floppy” screen for

a really long time.

o Possible cause: Virtual PC window isn‟t getting enough cycles for the code‟s CPU-bound

timeout delay.

o Possible solution: Make the Virtual PC the foreground window.

 Symptom: TFTP server is not responding when using Virtual PC.

o Possible cause: Virtual PC networking setting has not been set.

o Possible solution: Follow the directions above under “Create a Virtual PC.”

o Possible cause: The PXE server is configured with an incorrect MAC address for the Virtual PC.

The default MAC address is 00-03-ff-fe-ff-ff, but occasionally, Virtual PC will assign a

different MAC address. The MAC address is stored in the .vmc file.

http://msdn.microsoft.com/%1fnetframework/%1ftechnologyinfo/%1fhowtoget/%1fdefault.aspx

S I N G U L A R I T Y B U I L D I N G A N D R U N N I N G S I N G U L A R I T Y

Microsoft Confidential 17 03-Mar-2008

o Possible solution: Copy the MAC address for the Virtual PC, in the line “Node:

0003FF9150D9” on the RIS boot screen, to the boottest.cmd file.

 Symptom: PXE boot floppy displays “No reply from a server.”

o Possible cause: The boot server isn‟t started.

o Possible solution: Type “boottest.cmd” in the Singularity command shell.

 Symptom: PXE boot floppy displays “No reply from a server” and boottest.cmd does not show

any requests from virtual PC host MAC address.

o Possible cause: The Windows firewall is blocking DHCP and TFTP ports.

o Possible solution: Open firewall settings and enable ports 67 (DHCP) and 69 (TFTP).

 Symptom: Bootd.exe displays, “WSAEADDRINUSE (10048) Address already in use,”

error and Singularity doesn‟t boot because it can‟t find a boot server.

o Possible cause: Internet connection sharing is enabled on your computer.

o How to check: Type “ipconfig /all” and look for “IP Routing Enabled....:

Yes” in first block of configuration settings.

o Possible solution: Disable internet connection sharing in network properties.

