
Singularity: Rethinking the Software Stack
Galen C. Hunt and James R. Larus

Microsoft Research
One Microsoft Way

Redmond, WA 98052

[galenh,larus]@microsoft.com

ABSTRACT

Every operating system is a collection of design decisions. Many

of the design decisions in today’s most popular operating systems

have not been re-examined as hardware and software

requirements have changed over time. Because operating systems

form the foundation of almost every software stack, inadequacies

in present systems have a widespread impact. In this paper, we

describe the efforts of the Singularity project to re-examine these

design choices in light of advances in programming languages and

verification tools. Every Singularity system incorporates three key

architectural features: software-isolated processes for protection

of programs and system services, contract-based channels for

communication, and manifest-based programs for verification of

system properties. We describe this foundation in detail and

sketch the ongoing work in experimental systems built upon it.

Keywords

Open process architecture, sealed process architecture, sealed

kernel, software-isolated processes (SIPs), hardware protection

domains, manifest-based programs (MBPs), unsafe code tax.

1. INTRODUCTION
Every operating system is a collection of design decisions—some

explicit, some implicit. These design decisions include the choice

of implementation language, the program protection model, the

security model, the system’s view of what constitutes a program,

and many others.

The most widely used contemporary operating systems—

Windows, Linux, Mac OS X, and BSD—share a remarkable

number of design decisions. This commonality is not entirely

accidental, as these systems are all rooted in OS architectures and

development tools from the era of the late 1960’s and early

1970’s. Given common operating environments, the same

programming language, and similar user expectations, it is not

surprising that the designers of these operating systems made

similar design decisions. While some design decisions stand the

tests of time, others have aged less gracefully.

The Singularity project started in 2003 to rethink the design

decisions, and increasing liabilities, of existing operating systems

and their software stacks. When we started Singularity, these

liabilities were obvious, including wide-spread security

vulnerabilities, applications rendered inoperable by the

installation of allegedly unrelated software, and crashes caused by

errant extensions, plug-ins, and drivers.

Part of the problem is that operating systems had not evolved far

beyond the computer architectures and programming languages of

the 1960’s and 1970’s. The computing environment of that period

was very different from today. Computers were extremely limited

in speed and memory capacity, used only by a small group of

mostly benign technical literati, and were rarely networked or

connected to physical devices. None of these observations remain

true, but modern operating systems have not evolved to

accommodate an enormous shift in how computers are used.

1.1 A Journey, not a Destination
In the Singularity project, we have built a new operating system, a

new programming language, and new software verification tools.

The Singularity operating system incorporates a new software

architecture based on software isolation of processes and other

innovations. The programming language, Sing# [8], is an

extension of C# that provides verifiable first-class access to the

communication primitives in the OS as well as better support for

systems programming and factoring of code. The sound

verification tools detect programmer errors early in the

development cycle.

From the beginning, Singularity has been driven by the following

question: what would a software platform look like if it was

designed from scratch with the primary goal of dependability or

trustworthiness? To this end, we have championed three

strategies. First, the pervasive use of safe languages removes

many sources of failure, such as buffer overruns, in Singularity

systems. Second, the use of sound verification tools further

guarantees that entire classes of programmer errors are removed

from the system early in the development cycle. Third, an

improved system architecture stops the propagation of runtime

errors at well-defined boundaries, making it easier to achieve

robust and correct system behavior. Although dependability is

difficult to measure in a research prototype, our experience so far

has convinced us of the practicality of new technologies and

design decisions, which should lead to more robust and

dependable systems in the future.

Singularity is an environment for experimentation in new design

ideas, not a design solution. While we like to think our current

code base represents a significant step forward from prior work,

we do not see it as an “ideal” system or an end in itself. A

research system like Singularity is by intention a work in

progress; it is a laboratory in which we continue to explore

implementations and trade-offs.

In the remainder of this paper, we describe the common

architectural foundation shared by all Singularity systems. Section

3 describes the implementation of the Singularity kernel which

provides the base implementation of that foundation. Section 4

surveys our work over the last three years within the Singularity

project to explore new opportunities in the OS and system design

space. Finally, in Section 5, we summarize our work to date and

discuss areas of future work.

2. ARCHITECTURAL FOUNDATION
The Singularity system consists of three key architectural features:

software-isolated processes, contract-based channels, and

manifest-based programs. Software-isolated processes provide a

context for program execution protected from external

interference. Contract-based channels enable verifiable message-

based communication between processes. Manifest-based

programs define the code that runs within software-isolated

processes and declare the verifiable behavioral properties of that

code.

A guiding philosophy behind Singularity is one of simplicity over

richness. The foundational features respectively provide elemental

support for context of execution, communication, and system

verification and are a bedrock design upon which dependable,

verifiable systems can be built.

2.1 Software-Isolated Processes
The first foundational feature common to Singularity systems is

the Software-Isolated Process (SIP). Like processes in many

operating systems, a SIP is a holder of processing resources and

provides the context for program execution. However, unlike

traditional processes, SIPs take advantage of type and memory

safety to dramatically reduce the cost of isolating safe code.

Figure 1 illustrates the architectural features of a SIP. SIPs share

many properties with processes in other operating systems.

Execution of each user program occurs within the context of a

SIP. Associated with each SIP is a set of memory pages

containing code and data. Any given SIP contains one or more

threads of execution. A SIP executes with a security identity and

has associated OS security attributes. Finally, SIPs provide

information hiding and failure isolation.

Some features of SIPs have been explored in previous operating

systems, but with less rigor than in Singularity. SIPs communicate

through the exchange of messages over message-passing conduits

called channels. Singularity adds the rigor of statically verifiable

contracts. A contract specifies the messages and protocol for

communication across all channels of a given type. SIPs access

primitive functions, such as to send and receive messages, through

an Application Binary Interface (ABI) to the kernel. The

Singularity ABI, which has a rigorous design that includes fully

declarative versioning information, provides secure local access to

the most primitive aspects of computation—memory, execution,

and communication—and excludes semantically ambiguous

constructs such as ioctl.

SIPs differ from conventional operating system processes in other

ways. They cannot share writable memory with other SIPs, the

code within a SIP is sealed at execution time, and SIPs are

isolated by software verification, not hardware protection.

SIPs are closed object spaces. The objects in one SIP may not be

modified or directly accessed by any other SIP. Communication

between SIPs occurs by transferring the exclusive ownership of

data in messages. A linear type system and a special area of

memory known as the exchange heap allows lightweight

exchange of even very large amounts of data, but no sharing.

As a consequence, SIPs execute autonomously: each SIP has its

own data layouts, run-time system, and garbage collector.

SIPs are sealed code spaces. As a sealed process, a SIP cannot

dynamically load or generate code into itself. Sealed processes

compel a single extension mechanism for both the OS and

applications: extension code always executes in a new process,

distinct from its host’s SIP. Sealed processes offer a number of

advantages. They increase the ability of program analysis tools to

improve performance and reliability. They enable stronger

security mechanisms, such as identifying a process by its code

content. They can also eliminate the need to duplicate OS-style

access control in the runtime execution environments. A recent

Singularity paper [14] provides a thorough analysis of the trade-

offs and benefits of sealed processes.

SIPs rely on programming language type and memory safety for

isolation instead of memory management hardware. Through a

combination of static verification and runtime checks, Singularity

verifies that user code in a SIP cannot access memory regions

outside the SIP. With process isolation provided by software

rather than hardware, multiple SIPs can reside in a single physical

or virtual address space. In the simplest Singularity systems, the

kernel and all SIPs share a single kernel-mode address space. As

will be discussed in Section 4.2, richer systems can be built by

layering SIPs into multiple address spaces at both user and kernel

protection levels. Aiken et al. [1] evaluate the trade-offs between

software and hardware isolation.

Communication between SIPs incurs low overhead and SIPs are

inexpensive to create and destroy, as compared to hardware

protected processes (see Table 1). Unlike a hardware protected

process, a SIP can be created without creating page tables or

flushing TLBs. Context switches between SIPs also have very low

overhead as TLBs and virtually addressed caches need not be

flushed. On termination, a SIP’s resources can be efficiently

reclaimed and its memory pages recycled without an in-SIP

garbage collection.

Low cost makes it practical to use SIPs as a fine-grain isolation

and extension mechanism to replace the conventional mechanisms

of hardware protected processes and unprotected dynamic code

loading. As a consequence, Singularity needs only one error

recovery model, one communication mechanism, one security

architecture, and one programming model, rather than the layers

of partially redundant mechanisms and policies found in current

systems.

Figure 1. Architectural features of a Software-Isolated Process

(SIP) including threads, channels, messages, and an ABI for

the kernel.

ABI

Kernel

Software

Isolated

Process

“SIP”

 Cost (in CPU Cycles)

API
Call

Thread
Yield

Message
Ping/Pong

Process
Creation

Singularity 80 365 1,040 388,000

FreeBSD 878 911 13,300 1,030,000

Linux 437 906 5,800 719,000

Windows 627 753 6,340 5,380,000

Table 1. Basic process costs on AMD Athlon 64 3000+

(1.8 GHz) CPU with an NVIDIA nForce4 Ultra chipset.

A key experiment in the Singularity project is to construct an

entire operating system using SIPs and demonstrate that the

resulting system is more dependable than a conventional system.

The results so far are promising. SIPs are cheap enough to fit a

“natural” software development granularity of one developer or

team per SIP and light-weight enough to allow easy stop and

restart under aberrant behavior.

2.2 Contract-Based Channels
All communication between SIPs in Singularity flows through

contract-based channels. A channel is a bi-directional message

conduit with exactly two endpoints. A channel is lossless,

messages are delivered in order, and they can only be retrieved in

the order they were sent. Semantically, each endpoint has a

receive queue, and sending on an endpoint enqueues a message on

the other endpoint’s receive queue. A channel endpoint belongs to

exactly one thread at a time. Only the endpoint’s owning thread

can dequeue messages from its receive queue or send messages to

its peer.

Communication across a channel is described by a channel

contract. The two ends of a channel are not symmetric. We call

one endpoint the importing end (Imp) and the other the exporting

end (Exp). In the Sing# language, the endpoints are distinguished

at the type level with types C.Imp and C.Exp respectively, where

C is the channel contract governing the interaction.

Channel contracts are described with first class declarations in the

Sing# language. Channel contracts in Sing# consist of message

declarations and a set of named protocol states. Message

declarations state the number and types of arguments for each

message and an optional message direction. Each state specifies

the possible message sequences leading to other states in the state

machine.

We explain channel contracts via a condensed version of the

contract to access network device drivers in Listing 1. A channel

contract is written from the perspective of the SIP exporting a

service and starts in the first listed state. Message sequences

consist of a message tag and a message direction sign (! for Exp

to Imp), and (? for Imp to Exp). The message direction signs are

not strictly necessary if message declarations already contain a

direction (in, out), but the signs make the state machine more

human-readable.

In our example, the first state is START and the network device

driver starts the conversation by sending the client (probably the

network stack) information about the device via message

DeviceInfo. After that the conversation is in the

IO_CONFIGURE_BEGIN state, where the client must send message

RegisterForEvents to register another channel for receiving

events and set various parameters in order to get the conversation

into the IO_CONFIGURED state. If something goes wrong during

the parameter setting, the driver can force the client to start the

configuration again by sending message InvalidParameters.

Once the conversation is in the IO_CONFIGURED state, the client

can either start I/O (by sending StartIO), or reconfigure the

driver (ConfigureIO). If I/O is started, the conversation is in

state IO_RUNNING. In state IO_RUNNING, the client provides the

driver with packet buffers to be used for incoming packets

(message PacketForReceive). The driver may respond with

BadPacketSize, returning the buffer and indicating the size

expected. This way, the client can provide the driver with a

number of buffers for incoming packets. The client can ask for

packets with received data through message GetReceived-

Packet and the driver either returns such a packet via

ReceivedPacket or states that there are no more packets with

data (NoPacket). Similar message sequences are present for

transmitting packets, but we elide them in the example.

From the channel contract it appears that the client polls the driver

to retrieve packets. However, we haven’t explained the argument

of message RegisterForEvents yet. The argument of type

NicEvents.Exp:READY describes an Exp channel endpoint of

contract NicEvents in state READY. This endpoint argument

establishes a second channel between the client and the network

driver over which the driver notifies the client of important events

(such as the beginning of a burst of packet arrivals). The client

retrieves packets when it is ready through the NicDevice

channel. Figure 2 shows the configuration of channels between

contract NicDevice {
out message DeviceInfo(...);
in message RegisterForEvents(NicEvents.Exp:READY
c);
in message SetParameters(...);
out message InvalidParameters(...);
out message Success();
in message StartIO();
in message ConfigureIO();
in message PacketForReceive(byte[] in ExHeap p);
out message BadPacketSize(byte[] in ExHeap p, int
m);
in message GetReceivedPacket();
out message ReceivedPacket(Packet * in ExHeap p);
out message NoPacket();

state START: one {

DeviceInfo! → IO_CONFIGURE_BEGIN;
}
state IO_CONFIGURE_BEGIN: one {

RegisterForEvents? →
SetParameters? → IO_CONFIGURE_ACK;

}
state IO_CONFIGURE_ACK: one {

InvalidParameters! → IO_CONFIGURE_BEGIN;
Success! → IO_CONFIGURED;

}
state IO_CONFIGURED: one {

StartIO? → IO_RUNNING;
ConfigureIO? → IO_CONFIGURE_BEGIN;

}
state IO_RUNNING: one {

PacketForReceive? → (Success! or BadPacketSize!)
→ IO_RUNNING;

GetReceivedPacket? → (ReceivedPacket! or
NoPacket!)

→ IO_RUNNING;
...

}
}

Listing 1. Contract to access a network device driver.

contract NicEvents {
enum NicEventType {

NoEvent, ReceiveEvent, TransmitEvent, LinkEvent
}

out message NicEvent(NicEventType e);
in message AckEvent();

state READY: one {

NicEvent! → AckEvent? !READY;
}

}

Listing 2. Contract for network device events.

Figure 2. Channels between a network driver and stack.

NicDevice

NetStack NIC Driver
NicEvents

Imp

Imp

Exp

Exp

the client and the network driver. The NicEvents contract

appears in Listing 2.

Channels enable efficient and analyzable communication between

SIPs. When combined with support for linear types, Singularity

allows zero-copy exchange of large amounts of data between SIPs

access channels [8]. The Sing# compiler can statically verify that

send and receive operations on channels are never applied in the

wrong protocol state. A separate contract verifier can read a

program’s byte code and statically verify which contracts are used

within a program and that the code conforms to the state machine

described in the contract’s protocol.

Experience has taught us that channel contracts are valuable tool

for preventing and detecting mistakes. Programmers on the team

were initially skeptical of the value of contracts. The contract

conformance verifier was not completed until almost a year after

our first implementation of the network stack and web server.

When the verifier came online, it immediately flagged an error in

the interaction between network stack and web server. The error

occurred where the programmer failed to anticipate a lack of data

on an incoming socket, as expressed by a NO_DATA message. The

bug existed in the web server for almost a year. Within seconds,

the verifier flagged the error and identified the exact

circumstances under which the bug would be triggered.

Channel contracts provide a clean separation of concerns between

interacting components and help in understanding the system

architecture at a high level. Static checking helps programmers

avoid runtime “message not-understood errors.” Furthermore, the

runtime semantics for channels restricts failure to be observed on

receives only, thus eliminating handling of error conditions at

send operations where it is inconvenient.

2.3 Manifest-Based Programs
The third foundational architecture feature common to Singularity

systems is the Manifest-Based Program (MBP). A MBP is a

program defined by a static manifest. No code is allowed to run on

a Singularity system without a manifest. In fact, to start execution

a user invokes a manifest, not an executable file as in other

systems.

A manifest describes an MBP’s code resources, its required

system resources, its desired capabilities, and its dependencies on

other programs. When an MBP is installed on a system, the

manifest is used to identify and verify that the MBP’s code meets

all required safety properties, to ensure that all of the MBP’s

system dependencies can be met, and to prevent the installation of

the MBP from interfering with the execution of any previously

installed MBPs. Before execution, the manifest is used to discover

the configuration parameters affecting the MBP and restrictions

on those configuration parameters. When an MBP is invoked, the

manifest guides the placement of code into a SIP for execution,

the connection of channels between the new SIP and other SIPs,

and the granting of access to system resources by the SIP.

A manifest is more than just a description of a program or an

inventory of a SIP’s code content; it is a machine-checkable,

declarative expression of the MBP’s expected behavior. The

primary purpose of the manifest is to allow static and dynamic

verification of properties of the MBP. For example, the manifest

of a device driver provides sufficient information to allow install-

time verification that the driver will not access hardware used by a

previously installed device driver. Additional MBP properties

which are verified by Singularity include type and memory safety,

absence of privileged-mode instructions, conformance to channel

contracts, usage of only declared channel contracts, and correctly-

versioned ABI usage.

Code for an MBP can be included as an inline element of the

manifest or be provided in separate files. Interpreted scripting

languages, such as the Singularity shell language, can easily be

included as inline elements of a manifest. On the other hand, large

compiled applications may consist of numerous binaries, some

unique to the MBP and some shared with other MBPs and stored

in a repository separately from the MBP’s manifest.

Singularity’s common MBP manifest can be extended either

inline or with metadata in other files to allow verification of

sophisticated properties. For example, a basic manifest is

insufficient to verify that a MBP is type safe or that it uses only a

specific subset of channel contracts. Verification of the safety of

compiled code requires additional metadata in MBP binary files.

To facilitate static verification of as many run-time properties as

possible, code for Singularity MBPs is delivered to the system as

compiled Microsoft Intermediate Language (MSIL) binaries.

MSIL is the CPU-independent instruction set accepted by the

Microsoft Common Language Runtime (CLR) [7]. Singularity

uses the standard MSIL format with features specific to

Singularity expressed through MSIL metadata extensions. With a

few exceptions, the OS compiles MSIL into the native instruction

set at install time. Replacing JIT compilation with install-time

compilation is facilitated by the manifest, which declares all of the

executable MSIL code for SIPs created from the MBP.

Every component in Singularity is described by a manifest,

including the kernel, device drivers, and user applications. We

have demonstrated that MBPs are especially helpful in creating

“self-describing” device drivers with verifiable hardware access

properties [25]. Singularity systems use manifest features to move

command-line processing out of almost all applications and to

centralize it in the shell program. Manifests guide install-time

compilation of MBPs. We believe that MBPs will play a role in

significantly reducing the costs of system administration, but we

have not yet completed the experimental work to validate this

hypothesis.

3. SINGULARITY KERNEL
Supporting the architectural foundation of Singularity is the

Singularity kernel. The kernel provides the base abstractions of

software-isolated processes, contract-based channels, and

manifest-based programs. The kernel performs the crucial role of

dividing systems resources among competing programs and

abstracting the complexities of system hardware. To each SIP, the

kernel provides a pure execution environment with threads,

memory, and access to other MBPs via channels.

Like the previous Cedar [26] and Spin [4] projects, the Singularity

project enjoys the safety and productivity benefits of writing a

kernel in a type-safe, garbage-collected language. Counting lines

of code, over 90% of the Singularity kernel is written in Sing#.

While most of the kernel is type-safe Sing#, a significant portion

of the kernel code is written in the unsafe variant of the language.

The most significant unsafe code is the garbage collector, which

accounts for 48% of the unsafe code in Singularity. Other major

sources of unsafe Sing# code include the memory management

and I/O access subsystems. Singularity includes small pockets of

assembly language code in the same places it would be used in a

kernel written in C or C++, for example, the thread context

switch, interrupt vectors, etc. Approximately 6% of the

Singularity kernel is written in C++, consisting primarily of the

kernel debugger and low-level system initialization code.

The Singularity kernel is a microkernel; all device drivers,

network protocols, file systems, and user replaceable services

execute in SIPs outside the kernel. Functionality that remains in

the kernel includes scheduling, mediating privileged access to

hardware resources, managing system memory, managing threads

and thread stacks, and creating and destroying SIPs and channels.

The following subsections describe details of the kernel

implementation.

3.1 ABI
SIPs access primitive kernel facilities, such as the ability to send

and receive messages, through the Singularity Application Binary

Interface (ABI). The Singularity ABI follows the principle of

least privilege [23]. By default, a SIP can do nothing more than

manipulate its own state, and stop and start child SIPs. The ABI

provides a minimal, secure, and isolated computation environment

for each SIP.

SIPs gain access to higher-level system services, such the ability

to access files or send and receive network packets, through

channels, not as ABI functions. As used in Singularity, channel

endpoints are capabilities [19, 24]. For example, a SIP can only

access a file if it receives an endpoint to the file system from

another SIP. Channel endpoints arrive at a SIP either through

manifest-based configuration (to be described in Section 4.1.1) or

in messages on other endpoints. The ABI design supports the use

of channel endpoints as capabilities at runtime and for offline

analysis. Dynamically, the ABI design constrains the points of

entry of new endpoints—new capabilities—into a SIP. As

exposed to MBPs, the ABI separates mechanisms for accessing

primitive, process-local operations from higher-level services; this

separation enables static analysis tools to determine the types of

capabilities usable by code in an MBP. For example, a static tool

can determine that an application plug-in is incapable of

launching a distributed denial-of-service attack because it does not

contain code to access the network channel contract.

The kernel ABI is strongly versioned. The manifest for each MBP

explicitly identifies the ABI version it requires. At the language

level, program code is compiled against a specific ABI interface

assembly in a namespace that explicitly names the version, such

as Microsoft.Singularity.V1.Threads. A given Singularity

kernel can export multiple versions of its ABI to provide a clear

path for backward compatibility in the face of system evolution.

Table 2 provides a break-down of Singularity ABI functions by

feature. Students of other microkernel designs may find the

number of ABI functions, 192, to be shockingly large. The ABI

design is much simpler than the number suggests, as its design

favors explicit semantics over reducing the number of functions. It

is important to note that Singularity contains no semantically

complex functions like UNIX’s ioctl or Windows’

CreateFile.

The ABI maintains the system-wide state isolation invariant; a

process cannot directly alter the state of another process through

an ABI function. Object references can’t be passed through the

ABI to the kernel or another SIP. Consequently, the kernel and

process’s garbage collectors execute independently. ABI calls

affect only the state of the calling process. For example, in-

process synchronization objects—such as mutexes—cannot be

accessed across SIP boundaries. State isolation ensures that a

Singularity process has sole control over its state and its state

only.

Crossing the ABI boundary between SIP and kernel code can be

very efficient SIPs rely on software isolation instead of hardware

protection. Most SIPs run at kernel hardware privilege level (ring

0 on the x86 architecture) in the same address space as the kernel.

ABI calls, however, are more expensive than functions calls as

they must demark the transition between the SIP’s garbage-

collection space and the kernel’s garbage-collection space.

3.1.1 Privileged Code
In any OS, system integrity is protected by safety checks guarding

access to privileged instructions. For example, because loading a

new page table can subvert hardware protection of process

memory, an operating system like Windows or Linux will guard

access to code paths that load page tables. In an OS that relies on

hardware protection, functions containing privileged instructions

must be in the kernel to ensure that an errant or malicious program

cannot bypass safety checks around the privileged instructions.

SIPs allow greater flexibility in the placement of privileged

instructions. Because type and memory safety guarantee the

execution integrity of functions, Singularity systems can place

privileged instructions with their safety checks in trusted functions

that run inside SIPs. For example, privileged instructions for

accessing I/O hardware can be safely inlined into device drivers at

installation time. Other ABI functions can be inlined into SIP

code at installation time as well. Singularity takes advantage of

this safe inlining to optimize channel communication and the

performance of language runtimes and garbage collectors in SIPs.

3.1.2 Handle Table
While the design forbids cross-ABI object references, it is

necessary for SIP code to name abstract objects in the kernel, such

as mutexes or threads. Abstract kernel objects are exposed to SIPs

through strongly typed, opaque handles that reference slots in the

kernel’s handle table. Inside the kernel, handle table slots contain

references to literal kernel objects. Strong typing prevents SIP

code from changing or forging non-zero handles. In addition, slots

in the handle table are reclaimed only when a SIP terminates, to

prevent the SIP from freeing a mutex, retaining its handle, and

using it to manipulate another SIP’s object. Singularity reuses

table entries within a SIP as retaining a handle in this case can

only affect the offending SIP.

3.2 Memory Management
In most Singularity systems, the kernel and all SIPs reside in a

single address space protected with software isolation. The

Feature Functions

Channels 22

Child Processes 21

Configuration 25

Debugging & Diagnostics 31

Exchange Heap 8

Hardware Access 16

Linked Stacks 6

Paged Memory 17

Security Principals 3

Threads & Synchronization 43

 192

Table 2. Number of Singularity ABI functions by feature.

address space is logically partitioned into a kernel object space, an

object space for each SIP, and the exchange heap for

communication of channel data. A pervasive design decision is

the memory independence invariant: pointers must point to SIP’s

own memory or to memory owned by the SIP in the exchange

heap. No SIP can have a pointer to another SIP’s objects. This

invariant ensures that each SIP can be garbage collected and

terminated without the cooperation of other SIPs.

A SIP obtains memory via ABI calls to the kernel’s page

manager, which returns new, unshared pages. These pages need

not be adjacent to a SIP’s previously allocated memory pages

because the garbage collectors do not require contiguous memory,

though blocks of contiguous pages may be allocated for large

objects or arrays. In addition to memory for the SIP’s code and

heap data, a SIP has a stack per thread and access to the exchange

heap.

3.2.1 Exchange Heap
All data passed between SIPs must reside in the exchange heap.

Figure 3 shows how process heaps and the exchange heap relate.

SIPs can contain pointers into their own heap and into the

exchange heap. The exchange heap only contains pointers into the

exchange heap itself. Although all SIPs can hold pointers into the

exchange heap, every block of memory in the exchange heap is

owned (accessible) by at most one SIP at any time during the

execution of the system. Note that it is possible for a SIP to hold

dangling pointers into the exchange heap (pointers to blocks that

the SIP no longer owns), but static verification ensures that the

SIP will never access memory through dangling pointers.

To make the static verification of the single owner property of

blocks in the exchange heap tractable, we actually enforce a

stronger property, namely that each block is owned by at most one

thread at any time. The fact that each block in the exchange heap

is accessible by a single thread at any time also provides a useful

mutual exclusion guarantee. Furthermore, block freeing is

enforced statically. On abrupt process termination, blocks in the

exchange heap are recovered through reference counting. Block

ownership is recorded so that all relevant blocks can be released

when a SIP terminates.

3.3 Threads
The Singularity kernel and SIPs are multi-threaded. All threads

are kernel threads; they are visible to the kernel’s scheduler which

coordinates blocking operations. In most Singularity systems, the

performance of kernel thread context switches is closer to the

performance expected of user threads, because no protection

mode transfers are needed when a SIP runs in the kernel’s address

space and hardware privilege level.

3.3.1 Linked Stacks
Singularity uses linked stacks to reduce thread memory overhead.

These stacks grow on demand by adding non-contiguous

segments of 4K or more. Singularity’s compiler performs static

interprocedural analysis to optimize placement of overflow tests

[28]. If a stack space is too small, the SIP code calls an ABI,

which allocates a new stack segment and initializes the first stack

frame in the segment—between the running procedure and its

callee—to call the segment unlink routine, which will release the

segment when the stack frame is popped. For SIPs running in ring

0 on an x86, the current stack segment must always leave enough

room for the processor to save an interrupt or exception frame,

before the handler switches to a dedicated per-processor interrupt

stack.

3.3.2 Scheduler
The standard Singularity scheduler is optimized for a large

number of threads that communicate frequently. The scheduler

maintains two lists of runnable threads. The first, called the

unblocked list, contains threads that have recently become

runnable. The second, called the preempted list, contains runnable

threads that have been pre-empted. When choosing the next thread

to run, the scheduler removes threads from the unblocked list in

FIFO order. When the unblocked list is empty, the scheduler

removes the next thread from the preempted list (also in FIFO

order). Whenever a scheduling timer interrupt occurs, all threads

in the unblocked list are moved to the end of the preempted list,

followed by the thread that was running when the timer fired. The

first thread from the unblocked list is scheduled and the

scheduling timer is reset.

The effect of the two list scheduling policy is to favor threads that

are awoken by a message, do a small amount of work, send one or

more messages to other SIPs, and then block waiting for a

message. This is a common behavior for threads running message

handling loops. To avoid a costly reset of the scheduling hardware

timer, threads from the unblocked list inherit the scheduling

quantum of the thread that unblocked them. Combined with the

two-list policy, quantum inheritance allows Singularity to switch

from user code on a thread in one SIP to user code on a thread in

another SIP in as few as 394 cycles.

3.4 Garbage Collection
Garbage collection is an essential component of most safe

languages as it prevents memory deallocation errors that can

subvert safety guarantees. In Singularity, kernel and SIP object

spaces are garbage collected.

The large number of garbage collection algorithms and experience

strongly suggest that no one garbage collector is appropriate for

all system or application code [10]. Singularity’s architecture

decouples the algorithm, data structures, and execution of each

SIP’s garbage collector, so it can be selected to accommodate the

behavior of code in the SIP and to run without global

coordination. The four aspects of Singularity that make this

possible are: each SIP is a closed environment with its own run-

time support; pointers do not cross SIP or kernel boundaries, so

collectors need not consider cross-space pointers; messages on

channels are not objects, so agreement on memory layout is only

necessary for messages and other data in the exchange heap,

which is reference counted; and the kernel controls memory page

allocation, which provides a nexus for coordinating resource

allocation.

Figure 3. Pointers in process heaps and the exchange heap.

P1 Pn

Exchange Heap

Singularity’s runtime systems currently support five types of

collectors—generational semi-space, generational sliding

compacting, an adaptive combination of the previous two

collectors, mark-sweep, and concurrent mark-sweep. We currently

use the concurrent mark-sweep collector for system code, as it has

very short pause times during collection. With this collector, each

thread has a segregated free list, which eliminates thread

synchronization in the normal case. A garbage collection is

triggered at an allocation threshold and executes in an

independent collection thread that marks reachable objects.

During a collection, the collector stops each thread to scan its

stack, which introduces a pause time of less than 100

microseconds for typical stacks. The overhead of this collector is

higher than non-concurrent collectors, so we typically use a

simpler non-concurrent mark-sweep collector in applications.

Each SIP has its own collector that is solely responsible for

collection of objects in its object space. From the garbage

collector’s perspective, when a thread of control enters or leaves a

SIP (or the kernel) it is treated similarly to a call to or a call-back

from native code in conventional garbage collected environments.

Garbage collection for different object spaces can therefore be

scheduled and run completely independently. If a SIP employs a

stop-the-world collector, a thread is considered stopped with

respect to the SIP’s object space, even if it is running in the kernel

object space due to a kernel call. The thread, however, is stopped

upon return to the SIP for the duration of the collection.

In a garbage collected environment, a thread’s stack contains

object references that are potential roots for a collector. Calls into

the kernel are executed on a user thread’s stack and may store

kernel pointers in this stack. At first sight, this appears to violate

the memory independence invariant by creating cross-SIP

pointers, and, at least, entangles the user and kernel garbage

collections.

To avoid these problems, Singularity delimits the boundary

between each space’s stack frames, so a garbage collector need

not see references to the other space. At a cross-space (SIP

kernel or kernel SIP) call, Singularity saves callee-saved

registers in a special structure on the stack, which also demarks a

cross-space call. These structures mark the boundary of stack

regions that belong to each object space. Since calls in the kernel

ABI do not pass object pointers, a garbage collector can skip over

frames from the other space. These delimiters also facilitate

terminating SIPs cleanly. When a SIP is killed, each of its threads

is immediately stopped with a kernel exception, which skips over

and deallocates the process’s stack frames.

3.5 Channel Implementation
Channel endpoints and the values transferred across channels

reside in the exchange heap. The endpoints cannot reside in a

SIP’s object space, since they may themselves be passed across

channels. Similarly, data passed on a channel cannot reside in a

process, since it would violate the memory independence

invariant. A message sender passes ownership by storing a pointer

to the message in the receiving endpoint, at a location determined

by the current state of the message exchange protocol, and then

notifies the scheduler if the receiving thread is blocked in a

receive.

In order to achieve zero-allocation communication across

channels, we enforce a finiteness property on the queue size of

each channel. The rule we have adopted, and which is enforced by

Sing#, is that each cycle in the state transitions of a contract

contains at least one receive and one send action. This simple rule

guarantees that neither endpoint can send an unbounded amount

of data without having to wait for a message and allows static

layout of buffers in the endpoints themselves and pre-allocation as

an endpoint is allocated. Although the rule seems restrictive, we

have not yet seen a need to relax this rule in practice.

Pre-allocating endpoint queues and passing of pointers to

exchange heap memory naturally allows “zero copy”

implementations of multi-SIP subsystems such as the I/O stack.

For example, disk buffers and network packets can be transferred

across multiple channels, through a protocol stack and into an

application SIP, without copying.

3.6 Principals and Access Control
In Singularity, applications are security principals. More

precisely, principals are compound in the sense of Lampson et al.

[16, 29]: they reflect the application identity of the current SIP, an

optional role in which the application is running, and an optional

chain of principals through which the application was invoked or

given delegated authority. Users, in the traditional sense, are roles

of applications (for example, the system login program running in

the role of the logged in user). Application names are derived

from MBP manifests which in turn carry the name and signature

of the application publisher.

In the normal case, SIPs are associated with exactly one security

principal. However, it might be necessary, in the future, to allow

multiple principals per SIP to avoid excessive SIP creation in

certain apps that exert the authority of multiple different

principals. To support this usage pattern, we allow delegation of

authority over a channel to an existing SIP.

All communication between SIPs occurs over channels. From the

point of view of a SIP protecting resources (for example files),

each inbound channel speaks for a single security principal and

that principal serves as the subject for access control decisions

made with respect to that channel. Singularity access control is

discretionary; it is up to the file system SIP, for example, to

enforce controls on the objects it offers. The kernel support

needed to track principal names and associate principals with SIPs

and channels is fairly minimal. Access control decisions are made

by matching textual principals against patterns (e.g., regular

expressions), but this functionality is provided entirely through

SIP-space libraries as discussed by Wobber et al. [30].

4. DESIGN SPACE EXPLORATION
In the previous sections we described the architectural foundation

of Singularity: SIPs, channels, MBPs, and the Singularity kernel.

Upon this foundation, we continue to explore new points in the

OS design space. Singularity’s principled architecture,

amenability to sound static analysis, and relatively small code

base make it an excellent vehicle for exploring new design

options. In the subsections that follow, we describe four new

explorations in Singularity: compile-time reflection for generative

programming, support for hardware protection domains to

augment SIPs, hardware-agnostic heterogeneous multiprocessing,

and typed assembly language.

4.1 Compile-Time Reflection
The Java and CLR runtime environments provide support for

dynamic inspection of existing code and metadata (types and

members), as well as for generating new code and metadata at run

time. These capabilities—commonly called reflection—enable

highly dynamic applications as well as generative programming.

Unfortunately, the power of runtime reflection comes at a high

price. Runtime reflection necessitates keeping all metadata

around, it inhibits the ability to optimize code because of possible

future code changes, it can be used to circumvent system security,

and there is a high risk that emitted code will not be well-formed

due to the low-level nature of reflection APIs.

We have developed a new compile-time reflection (CTR) facility

[9]. Compile-time reflection (CTR) is a partial substitute for the

CLR’s full reflection capability. The core feature of CTR is a

high-level construct in Sing# called a transform that allows

programmers to write inspection and generation code in a pattern

matching and template style. The generated code and metadata is

verified statically to be well-formed, type-safe, and not violate

system safety properties. At the same time, a programmer can

avoid the complexities of reflection APIs.

Transforms can be provided by application developers or by the

OS as part of its trusted computing base. Transforms can be

applied either in the front-end compiler as source is converted to

MSIL or at install time as MSIL is read, before being converted to

a native instruction format. In the sealed, type-safe world of a SIP,

OS-provided transforms have the power to enforce system policy

and improve system performance because they can emit trusted

code into an otherwise untrusted process.

4.1.1 Manifest-Based Configuration by CTR
An early test of CTR was the construction of boiler-plate code for

SIP startup from declarative specifications of configuration

parameters in the MBP manifest. The generated code retrieves

startup arguments through a uniform kernel ABI, casts the

arguments to their appropriate declared type, and populates a

startup object for the SIP containing a field per parameter. This

CTR transform completely replaces traditional string-based

processing of command-line arguments in programs with

declarative manifest-based configuration. A similar transform is

used to automate the configuration of device drivers from

manifest information [25].

The transform in Listing 3, named DriverTransform, generates

the startup code for a device driver from a declarative declaration

of the driver’s resources needs. For example, the declarations in

the SB16 audio driver describe requirement to access banks of I/O

registers through the IoPortRange class, see Listing 4.

DriverTransform matches this class, since it derives from

DriverCategoryDeclaration and contains the specified

elements, such as a Values field of the appropriate type and a

placeholder for a private constructor. The keyword reflective

denotes a placeholder whose definition will be generated by a

transform using the implement modifier. Placeholders are

forward references that enable code in a program to refer to code

subsequently produced by a transform.

Pattern variables in the transform start with $ signs. In the

example, $DriverConfig is bound to Sb16Config. A variable

that matches more than one element starts with two $ signs. For

example, $$ioranges represents a list of fields, each having a

type $IoRangeType derived from IoRange (the types of the

various fields need not be the same). In order to generate code for

each element in collections (such as the collection of fields

$$ioranges), templates may contain the forall keyword,

which replicates the template for each binding in the collection.

The resulting code produced by the transform above is equivalent

to Listing 5.

The example also illustrates that code generated by a transform

can be type checked when the transform is compiled, rather than

deferring this error checking until the transform is applied, as is

the case with macros. In the example, the assignment to Values

is verifiably safe, as the type of the constructed object

($DriverConfig) matches the type of the Values field.

CTR transforms have proven to be an effective tool for generative

programming. As we apply CTR to new domains in Singularity

we continue to improve the generality of the transforms. For

example, recent experiments with using CTR transforms to

generate marshaling code have led to improvements in transform

expressiveness.

4.2 Hardware Protection Domains
Most operating systems use CPU memory management unit

(MMU) hardware to provide process isolation through two

mechanisms. First, processes are only allowed access to certain

pages of physical memory. Second, privilege levels prevent

untrusted code from executing privileged instructions that

transform DriverTransform
where $IoRangeType: IoRange {

 class $DriverConfig: DriverCategoryDeclaration {
 [$IoRangeAttribute(*)]
 $IoRangeType $$ioranges;

 public readonly static $DriverConfig Values;

 generate static $DriverConfig() {
 Values = new $DriverConfig();
 }

 implement private $DriverConfig() {
 IoConfig config = IoConfig.GetConfig();
 Tracing.Log(Tracing.Debug, "Config: {0}",

config.ToPrint());

 forall ($index = 0; $f in $$ioranges; $index++) {
 $f = ($f.$IoRangeType)

config.DynamicRanges[$index];
 }
 }
 }
}

Listing 3. CTR transform for device driver configuration.

[DriverCategory]
[Signature("/pnp/PNPB003")]
internal class Sb16Config: DriverCategoryDeclaration {
 [IoPortRange(0, Default = 0x0220,Length = 0x10)]
 internal readonly IoPortRange basePorts;

 [IoPortRange(1, Default = 0x0380,Length = 0x10)]
 internal readonly IoPortRange gamePorts;

 internal readonly static Sb16Config Values;

 reflective private Sb16Config();
}

Listing 4. Declarations of requirements in SB16 driver.

class SB16Config {
 …
 static Sb16Config() {
 Values = new Sb16Config();
 }

 private Sb16Config() {
 IoConfig config = IoConfig.GetConfig();
 Tracing.Log(Tracing.Debug,

"Config: {0}", config.ToPrint());

 basePorts = (IoPortRange)config.DynamicRanges[0];
 gamePorts = (IoPortRange)config.DynamicRanges[1];
 }
}

Listing 5. Output of transform to SB16 code.

manipulate the system resources that implement processes, such

as the MMU or interrupt controllers. These mechanisms have non-

trivial performance costs that are largely hidden because there has

been no widely used alternative approach to which they may be

compared.

To explore the design trade-offs of hardware protection versus

software isolation, recent work in Singularity augments SIPs,

which provide isolation through language safety and static

verification, with protection domains [1], which can provide an

additional level of hardware-based protection around SIPs. The

lower run-time cost of SIPs makes their use feasible at a finer

granularity than conventional processes, but hardware isolation

remains valuable as a defense-in-depth against potential failures in

software isolation mechanisms or to make available needed

address space on 32-bit machines.

Protection domains are hardware-enforced protection boundaries,

which can host one or more SIPs. Each protection domain consists

of a distinct virtual address space. The processor’s MMU enforces

memory isolation in a conventional manner. Each domain has its

own exchange heap, which is used for communications between

SIPs within the domain. A protection domain that does not isolate

its SIPs from the kernel is called a kernel domain. All SIPs in a

kernel domain run at the processor’s supervisor privilege level

(ring 0 on the x86 architecture), and share the kernel’s exchange

heap, thereby simplifying transitions and communication between

the processes and the kernel. Non-kernel domains run at user

privilege level (ring 3 on the x86).

Communication within a protection domain continues to use

Singularity’s efficient reference-passing scheme. However,

because each protection domain resides in a separate address

space, communication across domains requires data copying or

copy-on-write page mapping. The message-passing semantics of

Singularity channels makes the implementations indistinguishable

to application code (except for performance).

A protection domain could, in principle, host a single process

containing unverifiable code written in an unsafe language such as

C++. Although very useful for running legacy code, we have not

yet explored this possibility. Currently, all code within a

protection domain is also contained within a SIP, which continues

to provide an isolation and failure containment boundary.

Because multiple SIPs can be hosted within a protection domain,

domains can be employed selectively to provide hardware

isolation between specific processes, or between the kernel and

processes. The mapping of SIPs to protection domains is a run-

time decision. A Singularity system with a distinct protection

domain for each SIP is analogous to a fully hardware-isolated

microkernel system, such as MINIX 3 [12] (see Figure 4a). A

Singularity system with a kernel domain hosting the kernel,

device drivers, and services is analogous to a conventional,

monolithic operating system, but with more resilience to driver or

service failures (see Figure 4b). Singularity also supports unique

hybrid combinations of hardware and software isolation, such as

selection of kernel domains based on signed code (see Figure 4c).

4.2.1 Quantifying the Unsafe Code Tax
Singularity offers a unique opportunity to quantify the costs of

hardware and software isolation in an apples-to-apples

comparison. Once the costs are understood, individual systems

can choose to use hardware isolation when benefits outweigh the

costs.

Hardware protection does not come for free, though its costs are

diffuse and difficult to quantify. Costs of hardware protection

include maintenance of page tables, soft TLB misses, cross-

processor TLB maintenance, hard paging exceptions, and the

additional cache pressure caused by OS code and data supporting

hardware protection. In addition, TLB access is on the critical

path of many processor designs [2, 15] and so might affect both

processor clock speed and pipeline depth. Hardware protection

increases the cost of calls into the kernel and process context

switches [3]. On processors with an untagged TLB, such as most

current implementations of the x86 architecture, a process context

switch requires flushing the TLB, which incurs refill costs.

Figure 5 graphs the normalized execution time for the WebFiles

benchmark in six different configurations of hardware and

software isolation. The WebFiles benchmark is an I/O intensive

Figure 4a. Micro-kernel configuration

(like MINIX 3). Dotted lines mark

protection domains; dark domains are

user-level, light are kernel-level.

Figure 4b. Monolithic kernel and

monolithic application configuration.

Figure 4c. Configuration with distinct

policies for signed and unsigned code.

Kernel

Web

App

HTTP

Server

Web

Browser
Web

Plug-In

File

System

TCP/IP

Stack
Disk

Driver
NIC

Driver
Unsigned

Driver

App
Signed

Plug-in

Signed

Driver
Kernel

Unsigned

Plug-in

Signed

App
Unsigned

App

Unsigned

Driver

Signed

App

Signed

Plug-in

Signed

Driver
Kernel

Unsigned

Plug-in
Unsigned

App

Figure 5. Normalized WebFiles execution time.

-4.7%
+6.3%

+18.9%
+33.0% +37.7%

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

No runtime

checks

Physical

Memory

Add

4KB

Pages

Add

Separate

Domain

Add

Ring 3

Full

Microkernel

Safe Code Tax

Unsafe Code Tax

benchmarks based on SPECweb99. It consists of three SIPs: a

client which issues random file read requests across files with a

Zipf distribution of file size, a file system, and a disk device

driver. Times are all normalized against a default Singularity

configuration where all three SIPs run in the same address space

and privilege level as the kernel and paging hardware is disabled

as far as allowed by the processor.

The WebFiles benchmark clearly demonstrates the unsafe code

tax, the overheads paid by every program running in a system

built for unsafe code. With the TLB turned on and a single

system-wide address space with 4KB pages, WebFiles

experiences an immediate 6.3% slowdown. Moving the client SIP

to a separate protection domain (still in ring 0) increases the

slowdown to 18.9%. Moving the client SIP to ring 3 increases the

slowdown to 33%. Finally, moving each of the three SIPs to a

separate ring 3 protection domain increases the slowdown to

37.7%. By comparison, the runtime overhead for safe code is

under 5% (measured by disabling generation of array bound and

other checks in the compiler).

The unsafe code tax experienced by WebFiles may be worst case.

Not all applications are as IPC intensive as WebFiles and few

operating systems are fully isolated, hardware-protected

microkernels. However, almost all systems in use today

experience the overheads of running user processes in ring 3. In a

traditional hardware-protected OS, every single process pays the

unsafe code tax whether it contains safe or unsafe code. SIPs

provide the option of forcing only unsafe programs to pay the

unsafe code tax.

4.3 Heterogeneous Multiprocessing
Thanks to the physical constraints of semiconductor scaling, it is

easier to replicate processors on a die than to increase processor

speed. With vendors already demonstrating prototype chips with

80 processing cores [27], we have begun experiments in support

for so-called “many-core” systems in Singularity. These

experiments build on the SMP support already provided by the

Singularity kernel.

OS support for many-core systems goes beyond the simple thread

safety and data locality issues required for scaling on traditional

SMP systems. As work by Chakraborty et al. [5] suggests, code

and metadata locality can become crucial performance

bottlenecks. Chakraborty et al. improved system performance by

dynamically switching processors on user-kernel switches so that

OS code ran on one set of processors and application code ran on

another set. They assert that such dynamic specialization of

processors achieves better instruction cache locality and also

improves branch prediction as the processors tune themselves for

either application or OS code characteristics. We expect such

dynamic specialization to become even more beneficial as the

number of cores per chip increases faster than cache per chip.

Singularity already offers further opportunities for dynamic

specialization of processors beyond what Chakraborty et al. could

achieve with a monolithic OS. For example, because many

traditional OS services—such as file systems and network

stacks—are located in individual SIPs, Singularity can specialize

many-core processors by dedicating them to specific SIPs. With a

smaller code footprint per processor, there should be greater

affinity between the SIP code and the i-cache and other dynamic

performance optimization hardware in the processor [17].

Our hypothesis is that a smaller code footprint results in greater

dynamic specialization of the processor. We have recently

experimented with running only reduced subsets of the Singularity

microkernel on processors dedicated to a specific SIP. In the

smallest variant, none of the kernel runs on a dedicated SIP

processor. Instead, all ABI calls are remoted from the dedicated

processor to a processor running the full kernel using inter-

processor interrupts.

4.3.1 Instruction Set Architectures
Processing cores are proliferating not only in CPUs, but in I/O

cards and peripheral devices as well. Programmable I/O cards

commonly found in PCs include graphics processors, network

cards, RAID controllers, sound processors, and physics engines.

These processing cores present unique challenges as they often

have very different instruction set architectures and performance

characteristics from a system’s CPUs.

We currently see two approaches to programmable I/O processors

within the OS community. In one camp are the “traditionalists”

who argue that programmable I/O processors have come and gone

before, so there is little long-term need to consider them in the

OS. Programmable I/O devices should be treated as I/O devices

with their processors hidden as implementation details behind OS

I/O abstractions—this is the approach followed by Microsoft’s

TCP Chimney offload architecture [20], for example. In another

camp are the “specialists” who argue that I/O processors, such as

GPUs, should be treated as special, distinct processing units

executing outside the standard OS computation abstractions—this

is the approach followed by Microsoft’s DirectX. To this camp,

I/O processors will always require a unique tool set.

Within Singularity, we see an opportunity to pursue a new course

for programmable I/O processors. We agree with the “specialists”

that programmable I/O processors are here to stay due to the

better performance-per-watt of specialized processors. However,

unlike the “specialists,” we are exploring the hypothesis that

programmable I/O processors should become first-class entities to

OS scheduling and compute abstractions. The core idea is quite

simple: computation on programmable I/O processors should

occur within SIPs. Because of our existing heterogeneous

processing support, dedicated I/O processors need not run any

more of the Singularity kernel than the minimal variant that

remotes most ABI operations to the CPUs.

We believe the Singularity architecture offers five advantages that

make this new design for programmable I/O processing

promising. First, SIPs minimize the need for elaborate processor

features on I/O cores. For example, I/O processors need not have

memory management units for SIP protection. Second, contract-

based channels explicitly define the communication between a

SIP on an I/O processor and other SIPs. Third, Singularity’s

memory isolation invariant removes the need for shared memory

(or cache coherency) between SIPs on coprocessors and CPUs.

Fourth, the small, process-local ABI isolates operations that may

be safely implemented locally—such as memory allocation—from

services which must involve other SIPs. Finally, Singularity

packages manifest-based programs in the abstract MSIL format,

which can be converted to any I/O processor’s instruction set. The

same TCP/IP binary can be installed for both a system’s x86 CPU

and its ARM-based programmable network adapter.

We expect that the instruction-set neutrality of Singularity MBPs

encoded in MSIL may ultimately be relevant even for many-core

CPUs. As many-core systems proliferate, many in the engineering

community anticipate hardware specialization of cores. For

example, the pairing of large out-of-order cores with smaller in-

order-cores will provide systems with greater control over power

consumption. Many-core systems enable processor specialization

as each individual processor need not pay the full price of

compatibility required for single core chips; a many-core chip

may be considered backwards compatible as long as at least one

of its cores is backwards compatible. Our hypothesis is that

Singularity binaries can target “legacy-free” cores on many-core

CPUs as easily as “legacy-free” cores on programmable I/O

processors.

4.4 Typed Assembly Language
Since Singularity uses software verification to enforce isolation

between SIPs, the correctness of the verifier is critical to

Singularity’s security. For example, to ensure that untrusted code

in a SIP cannot access memory outside the SIP, the verifier must

check that the code does not cast an arbitrary integer to a pointer.

Currently, Singularity relies on the standard Microsoft

Intermediate Language (MSIL) verifier to check basic type safety

properties (e.g. no casts from integers to pointers or from integers

to kernel handles). Singularity also has an ownership checker that

verifies that MSIL code respects Singularity’s rule that each block

in the exchange heap is accessibly by only one thread.

Singularity uses the Bartok compiler [13] to translate an MBP’s

MSIL code to native machine language code (such as x86 code).

If the compiler is free of bugs, then it will always translate safe

MSIL code into safe native code. Since Bartok is a large and

highly optimizing compiler, though, it is likely to contain bugs,

and some of these bugs might cause the compiler to translate safe

MSIL code into unsafe native code.

We have begun integrating research on proof-carrying code [22]

and typed assembly language [21] into Bartok and Singularity.

Bartok has a typed intermediate language that maintains typing

information as it compiles to native code. This information will

allow Singularity to verify the safety of the native “typed

assembly language” (TAL) code, rather than the MSIL code.

Furthermore, a verifier for native code would allow Singularity to

run safe native code generated by other compilers or written by

hand.

As Bartok compiles MSIL code to native code, it translates the

data layout from MSIL’s abstract data format to a concrete data

format. This concrete format specifies exactly where fields are in

objects, where method pointers are in method tables, and where

run-time type information resides. Generating types for the

method tables and run-time type information is challenging;

treating these naively using simple record types can lead to ill-

typed native code (or worse, an unsound type system; see [18] for

more information). On the other hand, using too sophisticated a

type system may render type checking difficult or even

undecidable. Bartok uses Chen and Tarditi’s LILC type system

[6], which can type method table and run-time type information

layouts, but still has a simple type checking algorithm.

The concrete data format also specifies garbage collection

information, such as the locations of pointer fields in each object.

If this information is wrong, the garbage collector may collect

data prematurely, leaving unsafe dangling pointers. Furthermore,

some of Singularity’s garbage collectors impose additional

requirements on a SIP’s native code. For instance, the

generational collector requires that code invoke a “write barrier”

before writing to a field; failure to invoke the write barrier may

lead to dangling pointers. Finally, each Singularity garbage

collector is currently written as unsafe Sing# code; bugs in this

code could undermine Singularity’s security. We are addressing

these issues by rewriting the garbage collectors as safe code, so

that we can verify the SIP’s untrusted code and the collector’s

code together.

Writing a garbage collector in a safe language is challenging

because conventional safe languages do not support explicit

memory deallocation. Therefore, we have developed a type

system that supports both LILC’s types and explicit proofs about

the state of memory [11]. Using this type system, the garbage

collector can statically prove that its deallocation operations are

safe. The type system’s support for both LILC and memory proofs

will allow both the SIP’s untrusted code and the garbage collector

code to co-exist as a single, verifiable TAL program, ensuring the

safety of the SIP’s code, the collector, and their interaction. We

have currently implemented only a simple copying collector

written in a simple RISC typed assembly language, but we are

working on porting more sophisticated collectors to an x86

version of our TAL.

5. CONCLUSIONS
We started the Singularity project over three years ago to explore

how advances in languages, tools, and operating systems might

enable more dependable software systems. Our goal remains to

develop techniques and technologies that result in significant

improvements in dependability. As a shared laboratory for our

experimentation we created the Singularity OS. Central to the OS

are three fundamental architectural decisions that have

significantly improved the ability to verify the expected behavior

of software systems: software isolated processes (SIPs), contract-

based channels, and manifest-based programs (MBPs).

5.1 Performance and Compatibility
The Singularity project deprecated two priorities common to most

successful operating systems: high performance and compatibility

with previous systems. Singularity has always favored design

clarity over performance. At most decision points Singularity

attempted to provide “good enough” performance, but no better.

In some cases, such as communication micro-benchmarks,

performance significantly exceeds existing systems. These

performance improvements are a pleasant side effect of

architecture and design decisions motivated by a desire to build

more dependable systems.

Singularity abandoned application and driver compatibility to

explore new design options. This choice has been a double-edged

sword. On the one hand, we have been free to explore new ideas

without dragging along legacy chains. On the other hand, we have

been forced to rewrite or port every line of code in the Singularity

system. We would not suggest this approach for every project, but

we believe it was the correct choice for Singularity. The research

payoff has been great.

5.2 Architecture, Language, & Tool Synergies
One of the most important lessons we have learned from

Singularity is the benefits of a positive feedback cycle between

safe languages, improved OS architectures, and strong verification

tools. Advances in one of these areas can have beneficial impact

that enables an advance in another area; that advance then enables

an advance in another area, and the cycle continues (see Figure 6).

Our decision to seal SIPs against future code loading was inspired

by discussions with a representative of the Microsoft Office

product team who was concerned about the negative impact of a

particular plug-in. This advancement in OS architecture was

significantly easier because SIPs contain type safe code—no code

changes through pointers—and resulted in dramatic improvements

in the soundness and reach of the static verification techniques.

Likewise, the design of channels and contracts in Singularity was

heavily influenced by recent advances by our colleagues in

verification of communications in web services. Our colleagues in

the OS community often point out that at an implementation level,

two uni-directional channels are the preferred alternative to a

single bi-directional channel. However, a bi-directional channel

makes pair-wise communication with endpoint linearity much

easier to analyze. This decision improved verification and also

had a profound positive effect on message-passing performance

by enabling zero-copy communication through pointer passing.

Choice of language and verification technologies affects OS

architecture. Choice of OS architecture affects language and

verification technologies. We do not believe that Singularity has

reached the limit of benefits enabled by considering programming

tools and OS architecture together, but it highlights the

opportunities available.

6. ACKNOWLEDGEMENTS
Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, and Ted

Wobber deserve special thanks for their contributions to Sections

4.2, 4.1, 4.4, and 3.6, respectively.

A project like Singularity is the work of many hands. The

Singularity project has benefited from an incredibly talented

collection of our colleagues at Microsoft Research including

Sriram Rajamani from the Bangalore lab; Paul Barham, Richard

Black, Austin Donnelly, Tim Harris, Rebecca Isaacs, and

Dushyanth Narayanan from the Cambridge lab; Mark Aiken, Juan

Chen, Trishul Chilimbi, John DeTreville, Manuel Fahndrich,

Wolfgang Grieskamp, Chris Hawblitzel, Orion Hodson, Mike

Jones, Steven Levi, Qunyan Mangus, Virendra Marathe, Kirk

Olynyk, Mark Plesko, Jakob Rehof, Wolfram Schulte, Dan

Simon, Bjarne Steensgaard, David Tarditi, Songtao Xia, Brian

Zill, and Ben Zorn from the Redmond lab; and Martin Abadi,

Andrew Birrell, Úlfar Erlingsson, Roy Levin, Nick Murphy,

Chandu Thekkath, and Ted Wobber from the Silicon Valley lab.

To date 22 interns have contributed significant amounts of code

and inspiration to Singularity. They are: Michael Carbin, Adam

Chlipala, Jeremy Condit, Fernando Castor de Lima Filho, Marc

Eaddy, Daniel Frampton, Haryadi Gunawi, Hiroo Ishikawa, Chip

Killian, Prince Mahajan, Virendra Marathe, Bill McCloskey,

Martin Murray, Martin Pohlack, Polyvios Pratikakis, Tom

Roeder, Roussi Roussev, Avi Shinnar, Mike Spear, Cesar Spessot,

Yaron Weinsberg, and Aydan Yumerefendi.

Finally, a number of individuals from Microsoft’s engineering

organizations have made direct contributions to Singularity—

many in their spare time. These include Chris Brumme, Kent

Cedola, Ken Church, Arlie Davis, Rob Earhart, Raymond Endres,

Bruno Garagnon, Alexander Gounares, Jim Herbert, Ashok

Kuppusamy, Adrian Marinescu, Ravi Pandya, Stathis

Papaefstathiou, John Richardson, Evan Schrier, Valerie See,

David Stahlkopf, Aaron Stern, Clemens Szyperski, Dean Tribble,

and Sean Trowbridge.

REFERENCES
[1] Aiken, M., Fähndrich, M., Hawblitzel, C., Hunt, G. and

Larus, J., Deconstructing Process Isolation. In Proceedings of

the ACM SIGPLAN Workshop on Memory Systems

Correctness and Performance (MSPC 2006), San Jose, CA,

October 2006.

[2] Allen, D.H., Dhong, S.H., Hofstee, H.P., Leenstra, J.,

Nowka, K.J., Stasiak, D.L. and Wendel, D.F. Custom Circuit

Design as a Driver of Microprocessor Performance. IBM

Journal of Research and Development, 44 (6).

[3] Anderson, T.E., Levy, H.M., Bershad, B.N. and Lazowska,

E.D. The Interaction of Architecture and Operating System

Design. In Proceedings of the Fourth International

Conference on Architectural Support for Programming

Languages and Operating Systems, Santa Clara, CA, 1991,

108-120.

[4] Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G.,

Fiuczynski, M., Becker, D., Eggers, S. and Chambers, C.

Extensibility, Safety and Performance in the SPIN Operating

System. In Proceedings of the Fifteenth ACM Symposium on

Operating System Principles, Copper Mountain Resort, CO,

1995, 267-284.

[5] Chakraborty, K., Wells, P. and Sohi, G., Computation

Spreading: Employing Hardware Migration to Specialize

CMP Cores On-the-fly. In 12th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS XII), San Josa, CA, October

2006, 283-302.

[6] Chen, J. and Tarditi, D., A Simple Typed Intermediate

Language for Object-oriented Languages. In Proceedings of

the 32nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL '05), Long

Beach, CA, January 2005, 38-49.

[7] ECMA International, ECMA-335 Common Language

Infrastructure (CLI), 4th Edition. Technical Report Geneva,

Switzerland, 2006.

[8] Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt,

G., Larus, J.R. and Levi, S., Language Support for Fast and

Reliable Message Based Communication in Singularity OS.

In Proceedings of the EuroSys 2006 Conference, Leuven,

Belgium, April 2006, 177-190.

Figure 6. The synergy of improved OS architecture, safe

languages, and sound verification tools.

Safe

Languages

Sound

Verification

Tools

Improved

OS

Architecture

Safe

Languages

Sound

Verification

Tools

Improved

OS

Architecture

[9] Fähndrich, M., Carbin, M. and Larus, J., Reflective Program

Generation with Patterns. In 5th International Conference on

Generative Programming and Component Engineering

(GPCE'06), Portland, OR, October 2006.

[10] Fitzgerald, R. and Tarditi, D. The Case for Profile-directed

Selection of Garbage Collectors. In Proceedings of the 2nd

International Symposium on Memory Management (ISMM

'00), Minneapolis, MN, 2000, 111-120.

[11] Hawblitzel, C., Huang, H., Wittie, L. and Chen, J., A

Garbage-Collecting Typed Assembly Language. In AGM

SIGPLAN Workshop on Types in Language Design and

Implementation (TLDI '07), Nice, France, January 2007.

[12] Herder, J.N., Bos, H., Gras, B., Homburg, P. and

Tanenbaum, A.S. MINIX 3: A Highly Reliable, Self-

Repairing Operating System. Operating System Review, 40

(3). 80-89.

[13] Hunt, G., Larus, J., Abadi, M., Aiken, M., Barham, P.,

Fähndrich, M., Hawblitzel, C., Hodson, O., Levi, S.,

Murphy, N., Steensgaard, B., Tarditi, D., Wobber, T. and

Zill, B., An Overview of the Singularity Project. Technical

Report MSR-TR-2005-135, Microsoft Research, 2005.

[14] Hunt, G., Larus, J., Abadi, M., Aiken, M., Barham, P.,

Fähndrich, M., Hawblitzel, C., Hodson, O., Levi, S.,

Murphy, N., Steensgaard, B., Tarditi, D., Wobber, T. and

Zill, B., Sealing OS Processes to Improve Dependability and

Safety. In Proceedings of the EuroSys2007 Conference,

Lisbon, Portugal, March 2007.

[15] Kongetira, P., Aingaran, K. and Olukotun, K. Niagara: A 32-

Way Multithreaded Sparc Processor. IEEE Micro, 25 (2). 21-

29.

[16] Lampson, B., Abadi, M., Burrows, M. and Wobber, E.P.

Authentication in distributed systems: Theory and Practice.

ACM Transactions on Computer Systems, 10 (4). 265-310.

[17] Larus, J.R. and Parkes, M. Using Cohort-Scheduling to

Enhance Server Performance. In Proceedings of the USENIX

2002 Annual Conference, Monterey, CA, 2002, 103-114.

[18] League, C. A Type-Preserving Compiler Infrastructure, Yale

University, New Haven, CT, 2002.

[19] Levy, H.M. Capability-Based Computer Systems.

Butterworth-Heinemann, Newton, MA, 1984.

[20] Microsoft Corporation, Scalable Networking: Network

Protocol Offload - Introducing TCP Chimney. Technical

Report Redmond, WA, 2004.

[21] Morrisett, G., Walker, D., Crary, K. and Glew, N. From

System F to Typed Assembly Language. ACM Transactions

on Programming Languages and Systems, 21 (3). 527-568.

[22] Necula, G.C. and Lee, P. Safe Kernel Extensions Without

Run-Time Checking. In Proceedings of the Second

Symposium on Operating System Design and

Implementation, Seattle, Wa., 1996.

[23] Saltzer, J.H. and Schroeder, M.D. The protection of

information in computer systems. Proceedings of the IEEE,

63 (9). 1268-1308.

[24] Shapiro, J.S., Smith, J.M. and Farber, D.J. EROS: a Fast

Capability System. In Proceedings of the 17th ACM

Symposium on Operating Systems Principles (SOSP '99),

Charleston, SC, 1999, 170-185.

[25] Spear, M.F., Roeder, T., Hodson, O., Hunt, G.C. and Levi,

S., Solving the Starting Problem: Device Drivers as Self-

Describing Artifacts. In Proceedings of the EuroSys 2006

Conference, Leuven, Belgium, April 2006, 45-58.

[26] Swinehart, D.C., Zellweger, P.T., Beach, R.J. and Hagmann,

R.B. A Structural View of the Cedar Programming

Environment. ACM Transactions on Programming

Languages and Systems, 8 (4). 419-490.

[27] Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H.,

Tschanz, J., Finan, D., Iyer, P., Singh, A., Jacob, T., Jain, S.,

Venkataraman, S., Hoskote, Y. and Borkar, N., An 80-Tile

1.28TFLPOPS Network-on-Chip in 65nm CMOS. In 2007

IEEE International Solid-State Circuits Conference, San

Francisco, CA, February 2007.

[28] von Behren, R., Condit, J., Zhou, F., Necula, G.C. and

Brewer, E. Capriccio: Scalable Threads for Internet Services.

In Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principles (SOSP '03), Bolton Landing,

NY, 2003, 268-281.

[29] Wobber, E.P., Abadi, M., Burrows, M. and Lampson, B.

Authentication in the Taos Operating System. ACM

Transactions on Computer Systems, 12 (1). 3-32.

[30] Wobber, T., Abadi, M., Birrell, A., Simon, D.R. and

Yumerefendi, A., Authorizing Applications in Singularity. In

Proceedings of the EuroSys2007 Conference, Lisbon,

Portugal, March 2007.

	Introduction
	A Journey, not a Destination

	Architectural Foundation
	Software-Isolated Processes
	Contract-Based Channels
	Manifest-Based Programs

	Singularity Kernel
	ABI
	Privileged Code
	Handle Table

	Memory Management
	Exchange Heap

	Threads
	Linked Stacks
	Scheduler

	Garbage Collection
	Channel Implementation
	Principals and Access Control

	Design Space Exploration
	Compile-Time Reflection
	Manifest-Based Configuration by CTR

	Hardware Protection Domains
	Quantifying the Unsafe Code Tax

	Heterogeneous Multiprocessing
	Instruction Set Architectures

	Typed Assembly Language

	Conclusions
	Performance and Compatibility
	Architecture, Language, & Tool Synergies

	Acknowledgements
	References

