singrdk/base/Kernel/Singularity.Hal.ApicPC/Timer8254.cs

196 lines
7.3 KiB
C#

///////////////////////////////////////////////////////////////////////////////
//
// Microsoft Research Singularity
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// File: Timer8254.cs
//
// Useful reference URLs:
// http://developer.intel.com/design/archives/periphrl/index.htm
// http://developer.intel.com/design/archives/periphrl/docs/7203.htm
// http://developer.intel.com/design/archives/periphrl/docs/23124406.htm
//
using Microsoft.Singularity.Io;
using Microsoft.Singularity.Configuration;
using System;
using System.Threading;
using System.Diagnostics;
namespace Microsoft.Singularity.Hal
{
[DriverCategory]
[Signature("/pnp/PNP0100")]
public sealed class Timer8254Resources : DriverCategoryDeclaration
{
[IoPortRange(0, Default = 0x0040, Length = 0x04)]
public IoPortRange port1;
[IoIrqRange(1, Default = 0x00, Length = 0x01)]
public IoIrqRange irq1;
[IoFixedPortRange(Base = 0x0061, Length = 0x01)]
public IoPortRange port2;
}
//
// Note on the i8254 timer:
//
// The clock is driven by a 14.318 MHz clock through a divide-by-12
// counter.
// This gives a clock frequency of 1.193 MHz.
// Each tick is therefore 0.838 microseconds long.
// Thus a 16 bit timer gives us a maximum delay of 0.05 seconds.
//
[CLSCompliant(false)]
public sealed class Timer8254Apic
{
// Registers
const byte i8254_C2 = 0x02; // counter 2
const byte i8254_CW = 0x03; // control word
//
//The control word to the 8254 is composed of four fields:
//bits 6-7: select the counter
//bits 4-5: select read/write
//bits 1-3: mode to use
//bit 0 : BCD mode
//
// bits 6-7 select the counter
const byte i8254_CW_SEL0 = 0x00; // select counter 0
const byte i8254_CW_SEL1 = 0x40; // select counter 1
const byte i8254_CW_SEL2 = 0x80; // select counter 2
const byte i8254_CW_RBC = 0xc0; // read-back command
// bits 4-5 select transaction type
const byte i8254_CW_CLC = 0x00; // counter latch comm.
const byte i8254_CW_LSB = 0x10; // r/w lsb only
const byte i8254_CW_MSB = 0x20; // r/w msb only
const byte i8254_CW_BOTH = 0x30; // r/w lsb, then msb
// bits 1-3 select the mode. bit 3 is sometimes a don't care
const byte i8254_CW_MODE0 = 0x00; // int. on term. count
const byte i8254_CW_MODE1 = 0x02; // h/w retrig. one-shot
const byte i8254_CW_MODE2 = 0x04; // rate generator
const byte i8254_CW_MODE3 = 0x06; // square wave mode
const byte i8254_CW_MODE4 = 0x08; // s/w trig. strobe
const byte i8254_CW_MODE5 = 0x0a; // h/w trig. strobe
// bit 0 sets BCD mode, if you really must
const byte i8254_CW_BCD = 0x01; // set BCD operation
// read-back commands use bits 4 and 5 to return status these
// are the wrong way round since the bits are inverted (RTFDS).
//
const byte i8254_RB_NOSTATUS = 0xd0; // Don't get latched count
const byte i8254_RB_NOCOUNT = 0xe0; // Don't get status
const byte i8254_RB_ALL = 0xc0; // Get status and count
// read-back commands use bits 3-1 to select counter
const byte i8254_RB_SEL2 = 0x08; // counter 2
// status from read-back is returned in bits 6-7
const byte i8254_RB_OUT = 0x80; // out pin value
const byte i8254_RB_NULL = 0x40; // 1 = count null
private static readonly int DefaultTicksPerSecond = 1193182;
private static readonly int SystemTicksPerSecond = 10000000;
private PnpConfig config;
private byte irq;
private int frequency = DefaultTicksPerSecond;
// IOPorts
private IoPort C2Port;
private IoPort CWPort;
// Constructor
internal Timer8254Apic(PnpConfig config)
{
// /pnp/08/02/01/PNP0100 0003 cfg dis : ISA 8254 Timer : AT Timer
// IRQ mask=0001 type=47
// I/O Port inf=01 min=0040 max=0040 aln=01 len=04 0040..0043
this.config = config;
this.irq = ((IoIrqRange)config.DynamicRanges[1]).Irq;
IoPortRange ioPorts = (IoPortRange) config.DynamicRanges[0];
C2Port = ioPorts.PortAtOffset(i8254_C2, 1, Access.ReadWrite);
CWPort = ioPorts.PortAtOffset(i8254_CW, 1, Access.ReadWrite);
// Use Timer2 as it's not connected as interrupt source.
//
// Lower 2 bits of port 61 are described in:
// The Indispensable PC Hardware Book (3rd Edition) p.724
ioPorts = (IoPortRange) config.FixedRanges[0];
IoPort p = ioPorts.PortAtOffset(0, 1, Access.ReadWrite);
//
// Also clear the NMI RAM parity error to enable the PCI card
// to generate NMI if the button is depressed
//
p.Write8((byte) ((p.Read8() & 0xf8) | 0x01));
}
internal void Start(ushort pitTicks)
{
CWPort.Write8(i8254_CW_MODE2 | i8254_CW_BOTH | i8254_CW_SEL2);
C2Port.Write8((byte)(pitTicks & 0xff));
C2Port.Write8((byte)(pitTicks >> 8));
do {
CWPort.Write8(i8254_RB_NOCOUNT | i8254_RB_SEL2);
} while ((C2Port.Read8() & i8254_RB_NULL) == i8254_RB_NULL);
}
internal ushort Read()
{
CWPort.Write8(i8254_RB_NOSTATUS | i8254_RB_SEL2);
return (ushort)(C2Port.Read8() | (C2Port.Read8() << 8));
}
internal void Stop()
{
CWPort.Write8(i8254_CW_MODE2 | i8254_CW_BOTH | i8254_CW_SEL2);
C2Port.Write8((byte)(0)); // LSB
// C2Port.Write8((byte)(0)); MSB DON'T!
}
internal void SetFrequency(uint newFrequency)
{
frequency = (int)newFrequency;
DebugStub.Print("i8254 frequency {0} Hz\n", __arglist(frequency));
}
internal uint TimeSpanToTimerTicks(uint ts)
{
return (uint) ((ulong)ts * (uint)(frequency / SystemTicksPerSecond));
}
internal uint TimerToTimeSpanTicks(uint ts)
{
return (uint) ((ulong)ts * (uint)(SystemTicksPerSecond / frequency));
}
#if FIXED_FREQUENCY
internal static int TimeSpanTicksToPitTicks(int ts)
{
// t = 1193182 * T / (10^7) = 0.1193182 * T
// = T * (1/0x10 + 0xe8ba/0x100000)
int tmp = (ts * 0xe8ba) >> 20;
return tmp + (ts >> 4);
}
internal static int PitTicksToTimeSpanTicks(int delta)
{
// T = 10^7 * t / 1193182 = 8.3809511 * t
// = t * (8 + 0x6186/0x10000)
return (delta << 3) + ((delta * 0x6186) >> 16);
}
#endif
}
}