singrdk/base/boot/SingLdrPc/x86/blcrtasm.asm

1545 lines
48 KiB
NASM

;++
;
; Copyright (c) Microsoft Corporation
;
; Module Name:
;
; blcrt.asm
;
; Abstract:
;
; This module implements utility functions for boot loader C runtime.
;
; Environment:
;
; Boot loader.
;
;--
include bl.inc
.686p
.model flat
.code
assume ds:flat
assume es:flat
assume ss:flat
assume fs:flat
LOWORD equ [0]
HIWORD equ [4]
;***
;lldiv.asm - signed long divide routine
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; defines the signed long divide routine
; __alldiv
;
;Revision History:
; 11-29-83 DFW initial version
; 06-01-84 RN modified to use cmacros
; 10-24-87 SKS fixed off-by-1 error for dividend close to 2**32.
; 05-18-89 SKS Remove redundant "MOV SP,BP" from epilog
; 11-28-89 GJF Fixed copyright
; 11-19-93 SMK Modified to work on 64 bit integers
; 01-17-94 GJF Minor changes to build with NT's masm386.
; 07-22-94 GJF Use esp-relative addressing for args. Shortened
; conditional jumps. Also, don't use xchg to do a
; simple move between regs.
;
;*******************************************************************************
;***
;lldiv - signed long divide
;
;Purpose:
; Does a signed long divide of the arguments. Arguments are
; not changed.
;
;Entry:
; Arguments are passed on the stack:
; 1st pushed: divisor (QWORD)
; 2nd pushed: dividend (QWORD)
;
;Exit:
; EDX:EAX contains the quotient (dividend/divisor)
; NOTE: this routine removes the parameters from the stack.
;
;Uses:
; ECX
;
;Exceptions:
;
;*******************************************************************************
__alldiv PROC NEAR
push edi
push esi
push ebx
; Set up the local stack and save the index registers. When this is done
; the stack frame will look as follows (assuming that the expression a/b will
; generate a call to lldiv(a, b)):
;
; -----------------
; | |
; |---------------|
; | |
; |--divisor (b)--|
; | |
; |---------------|
; | |
; |--dividend (a)-|
; | |
; |---------------|
; | return addr** |
; |---------------|
; | EDI |
; |---------------|
; | ESI |
; |---------------|
; ESP---->| EBX |
; -----------------
;
DVND equ [esp + 16] ; stack address of dividend (a)
DVSR equ [esp + 24] ; stack address of divisor (b)
; Determine sign of the result (edi = 0 if result is positive, non-zero
; otherwise) and make operands positive.
xor edi,edi ; result sign assumed positive
mov eax,HIWORD(DVND) ; hi word of a
or eax,eax ; test to see if signed
jge short L1 ; skip rest if a is already positive
inc edi ; complement result sign flag
mov edx,LOWORD(DVND) ; lo word of a
neg eax ; make a positive
neg edx
sbb eax,0
mov HIWORD(DVND),eax ; save positive value
mov LOWORD(DVND),edx
L1:
mov eax,HIWORD(DVSR) ; hi word of b
or eax,eax ; test to see if signed
jge short L2 ; skip rest if b is already positive
inc edi ; complement the result sign flag
mov edx,LOWORD(DVSR) ; lo word of a
neg eax ; make b positive
neg edx
sbb eax,0
mov HIWORD(DVSR),eax ; save positive value
mov LOWORD(DVSR),edx
L2:
;
; Now do the divide. First look to see if the divisor is less than 4194304K.
; If so, then we can use a simple algorithm with word divides, otherwise
; things get a little more complex.
;
; NOTE - eax currently contains the high order word of DVSR
;
or eax,eax ; check to see if divisor < 4194304K
jnz short L3 ; nope, gotta do this the hard way
mov ecx,LOWORD(DVSR) ; load divisor
mov eax,HIWORD(DVND) ; load high word of dividend
xor edx,edx
div ecx ; eax <- high order bits of quotient
mov ebx,eax ; save high bits of quotient
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
div ecx ; eax <- low order bits of quotient
mov edx,ebx ; edx:eax <- quotient
jmp short L4 ; set sign, restore stack and return
;
; Here we do it the hard way. Remember, eax contains the high word of DVSR
;
L3:
mov ebx,eax ; ebx:ecx <- divisor
mov ecx,LOWORD(DVSR)
mov edx,HIWORD(DVND) ; edx:eax <- dividend
mov eax,LOWORD(DVND)
L5:
shr ebx,1 ; shift divisor right one bit
rcr ecx,1
shr edx,1 ; shift dividend right one bit
rcr eax,1
or ebx,ebx
jnz short L5 ; loop until divisor < 4194304K
div ecx ; now divide, ignore remainder
mov esi,eax ; save quotient
;
; We may be off by one, so to check, we will multiply the quotient
; by the divisor and check the result against the orignal dividend
; Note that we must also check for overflow, which can occur if the
; dividend is close to 2**64 and the quotient is off by 1.
;
mul dword ptr HIWORD(DVSR) ; QUOT * HIWORD(DVSR)
mov ecx,eax
mov eax,LOWORD(DVSR)
mul esi ; QUOT * LOWORD(DVSR)
add edx,ecx ; EDX:EAX = QUOT * DVSR
jc short L6 ; carry means Quotient is off by 1
;
; do long compare here between original dividend and the result of the
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
; subtract one (1) from the quotient.
;
cmp edx,HIWORD(DVND) ; compare hi words of result and original
ja short L6 ; if result > original, do subtract
jb short L7 ; if result < original, we are ok
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
jbe short L7 ; if less or equal we are ok, else subtract
L6:
dec esi ; subtract 1 from quotient
L7:
xor edx,edx ; edx:eax <- quotient
mov eax,esi
;
; Just the cleanup left to do. edx:eax contains the quotient. Set the sign
; according to the save value, cleanup the stack, and return.
;
L4:
dec edi ; check to see if result is negative
jnz short L8 ; if EDI == 0, result should be negative
neg edx ; otherwise, negate the result
neg eax
sbb edx,0
;
; Restore the saved registers and return.
;
L8:
pop ebx
pop esi
pop edi
ret 16
__alldiv ENDP
;***
;lldvrm.asm - signed long divide and remainder routine
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; defines the signed long divide and remainder routine
; __alldvrm
;
;Revision History:
; 10-06-98 SMK Initial version.
;
;*******************************************************************************
;***
;lldvrm - signed long divide and remainder
;
;Purpose:
; Does a signed long divide and remainder of the arguments. Arguments are
; not changed.
;
;Entry:
; Arguments are passed on the stack:
; 1st pushed: divisor (QWORD)
; 2nd pushed: dividend (QWORD)
;
;Exit:
; EDX:EAX contains the quotient (dividend/divisor)
; EBX:ECX contains the remainder (divided % divisor)
; NOTE: this routine removes the parameters from the stack.
;
;Uses:
; ECX
;
;Exceptions:
;
;*******************************************************************************
__alldvrm PROC NEAR
push edi
push esi
push ebp
; Set up the local stack and save the index registers. When this is done
; the stack frame will look as follows (assuming that the expression a/b will
; generate a call to alldvrm(a, b)):
;
; -----------------
; | |
; |---------------|
; | |
; |--divisor (b)--|
; | |
; |---------------|
; | |
; |--dividend (a)-|
; | |
; |---------------|
; | return addr** |
; |---------------|
; | EDI |
; |---------------|
; | ESI |
; |---------------|
; ESP---->| EBP |
; -----------------
;
DVND equ [esp + 16] ; stack address of dividend (a)
DVSR equ [esp + 24] ; stack address of divisor (b)
; Determine sign of the quotient (edi = 0 if result is positive, non-zero
; otherwise) and make operands positive.
; Sign of the remainder is kept in ebp.
xor edi,edi ; result sign assumed positive
xor ebp,ebp ; result sign assumed positive
mov eax,HIWORD(DVND) ; hi word of a
or eax,eax ; test to see if signed
jge short L1 ; skip rest if a is already positive
inc edi ; complement result sign flag
inc ebp ; complement result sign flag
mov edx,LOWORD(DVND) ; lo word of a
neg eax ; make a positive
neg edx
sbb eax,0
mov HIWORD(DVND),eax ; save positive value
mov LOWORD(DVND),edx
L1:
mov eax,HIWORD(DVSR) ; hi word of b
or eax,eax ; test to see if signed
jge short L2 ; skip rest if b is already positive
inc edi ; complement the result sign flag
mov edx,LOWORD(DVSR) ; lo word of a
neg eax ; make b positive
neg edx
sbb eax,0
mov HIWORD(DVSR),eax ; save positive value
mov LOWORD(DVSR),edx
L2:
;
; Now do the divide. First look to see if the divisor is less than 4194304K.
; If so, then we can use a simple algorithm with word divides, otherwise
; things get a little more complex.
;
; NOTE - eax currently contains the high order word of DVSR
;
or eax,eax ; check to see if divisor < 4194304K
jnz short L3 ; nope, gotta do this the hard way
mov ecx,LOWORD(DVSR) ; load divisor
mov eax,HIWORD(DVND) ; load high word of dividend
xor edx,edx
div ecx ; eax <- high order bits of quotient
mov ebx,eax ; save high bits of quotient
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
div ecx ; eax <- low order bits of quotient
mov esi,eax ; ebx:esi <- quotient
;
; Now we need to do a multiply so that we can compute the remainder.
;
mov eax,ebx ; set up high word of quotient
mul dword ptr LOWORD(DVSR) ; HIWORD(QUOT) * DVSR
mov ecx,eax ; save the result in ecx
mov eax,esi ; set up low word of quotient
mul dword ptr LOWORD(DVSR) ; LOWORD(QUOT) * DVSR
add edx,ecx ; EDX:EAX = QUOT * DVSR
jmp short L4 ; complete remainder calculation
;
; Here we do it the hard way. Remember, eax contains the high word of DVSR
;
L3:
mov ebx,eax ; ebx:ecx <- divisor
mov ecx,LOWORD(DVSR)
mov edx,HIWORD(DVND) ; edx:eax <- dividend
mov eax,LOWORD(DVND)
L5:
shr ebx,1 ; shift divisor right one bit
rcr ecx,1
shr edx,1 ; shift dividend right one bit
rcr eax,1
or ebx,ebx
jnz short L5 ; loop until divisor < 4194304K
div ecx ; now divide, ignore remainder
mov esi,eax ; save quotient
;
; We may be off by one, so to check, we will multiply the quotient
; by the divisor and check the result against the orignal dividend
; Note that we must also check for overflow, which can occur if the
; dividend is close to 2**64 and the quotient is off by 1.
;
mul dword ptr HIWORD(DVSR) ; QUOT * HIWORD(DVSR)
mov ecx,eax
mov eax,LOWORD(DVSR)
mul esi ; QUOT * LOWORD(DVSR)
add edx,ecx ; EDX:EAX = QUOT * DVSR
jc short L6 ; carry means Quotient is off by 1
;
; do long compare here between original dividend and the result of the
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
; subtract one (1) from the quotient.
;
cmp edx,HIWORD(DVND) ; compare hi words of result and original
ja short L6 ; if result > original, do subtract
jb short L7 ; if result < original, we are ok
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
jbe short L7 ; if less or equal we are ok, else subtract
L6:
dec esi ; subtract 1 from quotient
sub eax,LOWORD(DVSR) ; subtract divisor from result
sbb edx,HIWORD(DVSR)
L7:
xor ebx,ebx ; ebx:esi <- quotient
L4:
;
; Calculate remainder by subtracting the result from the original dividend.
; Since the result is already in a register, we will do the subtract in the
; opposite direction and negate the result if necessary.
;
sub eax,LOWORD(DVND) ; subtract dividend from result
sbb edx,HIWORD(DVND)
;
; Now check the result sign flag to see if the result is supposed to be positive
; or negative. It is currently negated (because we subtracted in the 'wrong'
; direction), so if the sign flag is set we are done, otherwise we must negate
; the result to make it positive again.
;
dec ebp ; check result sign flag
jns short L9 ; result is ok, set up the quotient
neg edx ; otherwise, negate the result
neg eax
sbb edx,0
;
; Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
;
L9:
mov ecx,edx
mov edx,ebx
mov ebx,ecx
mov ecx,eax
mov eax,esi
;
; Just the cleanup left to do. edx:eax contains the quotient. Set the sign
; according to the save value, cleanup the stack, and return.
;
dec edi ; check to see if result is negative
jnz short L8 ; if EDI == 0, result should be negative
neg edx ; otherwise, negate the result
neg eax
sbb edx,0
;
; Restore the saved registers and return.
;
L8:
pop ebp
pop esi
pop edi
ret 16
__alldvrm ENDP
;***
;llmul.asm - long multiply routine
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; Defines long multiply routine
; Both signed and unsigned routines are the same, since multiply's
; work out the same in 2's complement
; creates the following routine:
; __allmul
;
;Revision History:
; 11-29-83 DFW initial version
; 06-01-84 RN modified to use cmacros
; 04-17-85 TC ignore signs since they take care of themselves
; do a fast multiply if both hiwords of arguments are 0
; 10-10-86 MH slightly faster implementation, for 0 in upper words
; 03-20-89 SKS Remove redundant "MOV SP,BP" from epilogs
; 05-18-89 SKS Preserve BX
; 11-28-89 GJF Fixed copyright
; 11-19-93 SMK Modified to work on 64 bit integers
; 01-17-94 GJF Minor changes to build with NT's masm386.
; 07-22-94 GJF Use esp-relative addressing for args. Shortened
; conditional jump.
;
;*******************************************************************************
;***
;llmul - long multiply routine
;
;Purpose:
; Does a long multiply (same for signed/unsigned)
; Parameters are not changed.
;
;Entry:
; Parameters are passed on the stack:
; 1st pushed: multiplier (QWORD)
; 2nd pushed: multiplicand (QWORD)
;
;Exit:
; EDX:EAX - product of multiplier and multiplicand
; NOTE: parameters are removed from the stack
;
;Uses:
; ECX
;
;Exceptions:
;
;*******************************************************************************
__allmul PROC NEAR
A EQU [esp + 4] ; stack address of a
B EQU [esp + 12] ; stack address of b
;
; AHI, BHI : upper 32 bits of A and B
; ALO, BLO : lower 32 bits of A and B
;
; ALO * BLO
; ALO * BHI
; + BLO * AHI
; ---------------------
;
mov eax,HIWORD(A)
mov ecx,HIWORD(B)
or ecx,eax ;test for both hiwords zero.
mov ecx,LOWORD(B)
jnz short hard ;both are zero, just mult ALO and BLO
mov eax,LOWORD(A)
mul ecx
ret 16 ; callee restores the stack
hard:
push ebx
; must redefine A and B since esp has been altered
A2 EQU [esp + 8] ; stack address of a
B2 EQU [esp + 16] ; stack address of b
mul ecx ;eax has AHI, ecx has BLO, so AHI * BLO
mov ebx,eax ;save result
mov eax,LOWORD(A2)
mul dword ptr HIWORD(B2) ;ALO * BHI
add ebx,eax ;ebx = ((ALO * BHI) + (AHI * BLO))
mov eax,LOWORD(A2) ;ecx = BLO
mul ecx ;so edx:eax = ALO*BLO
add edx,ebx ;now edx has all the LO*HI stuff
pop ebx
ret 16 ; callee restores the stack
__allmul ENDP
;***
;llrem.asm - signed long remainder routine
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; defines the signed long remainder routine
; __allrem
;
;Revision History:
; 11-29-83 DFW initial version
; 06-01-84 RN modified to use cmacros
; 10-23-87 SKS fixed off-by-1 error for dividend close to 2**32.
; 05-18-89 SKS Remove redundant "MOV SP,BP" from epilog
; 11-28-89 GJF Fixed copyright
; 11-19-93 SMK Modified to work on 64 bit integers
; 01-17-94 GJF Minor changes to build with NT's masm386.
; 07-22-94 GJF Use esp-relative addressing for args. Shortened
; conditional jumps.
;
;*******************************************************************************
;***
;llrem - signed long remainder
;
;Purpose:
; Does a signed long remainder of the arguments. Arguments are
; not changed.
;
;Entry:
; Arguments are passed on the stack:
; 1st pushed: divisor (QWORD)
; 2nd pushed: dividend (QWORD)
;
;Exit:
; EDX:EAX contains the remainder (dividend%divisor)
; NOTE: this routine removes the parameters from the stack.
;
;Uses:
; ECX
;
;Exceptions:
;
;*******************************************************************************
__allrem PROC NEAR
push ebx
push edi
; Set up the local stack and save the index registers. When this is done
; the stack frame will look as follows (assuming that the expression a%b will
; generate a call to lrem(a, b)):
;
; -----------------
; | |
; |---------------|
; | |
; |--divisor (b)--|
; | |
; |---------------|
; | |
; |--dividend (a)-|
; | |
; |---------------|
; | return addr** |
; |---------------|
; | EBX |
; |---------------|
; ESP---->| EDI |
; -----------------
;
DVND equ [esp + 12] ; stack address of dividend (a)
DVSR equ [esp + 20] ; stack address of divisor (b)
; Determine sign of the result (edi = 0 if result is positive, non-zero
; otherwise) and make operands positive.
xor edi,edi ; result sign assumed positive
mov eax,HIWORD(DVND) ; hi word of a
or eax,eax ; test to see if signed
jge short L1 ; skip rest if a is already positive
inc edi ; complement result sign flag bit
mov edx,LOWORD(DVND) ; lo word of a
neg eax ; make a positive
neg edx
sbb eax,0
mov HIWORD(DVND),eax ; save positive value
mov LOWORD(DVND),edx
L1:
mov eax,HIWORD(DVSR) ; hi word of b
or eax,eax ; test to see if signed
jge short L2 ; skip rest if b is already positive
mov edx,LOWORD(DVSR) ; lo word of b
neg eax ; make b positive
neg edx
sbb eax,0
mov HIWORD(DVSR),eax ; save positive value
mov LOWORD(DVSR),edx
L2:
;
; Now do the divide. First look to see if the divisor is less than 4194304K.
; If so, then we can use a simple algorithm with word divides, otherwise
; things get a little more complex.
;
; NOTE - eax currently contains the high order word of DVSR
;
or eax,eax ; check to see if divisor < 4194304K
jnz short L3 ; nope, gotta do this the hard way
mov ecx,LOWORD(DVSR) ; load divisor
mov eax,HIWORD(DVND) ; load high word of dividend
xor edx,edx
div ecx ; edx <- remainder
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
div ecx ; edx <- final remainder
mov eax,edx ; edx:eax <- remainder
xor edx,edx
dec edi ; check result sign flag
jns short L4 ; negate result, restore stack and return
jmp short L8 ; result sign ok, restore stack and return
;
; Here we do it the hard way. Remember, eax contains the high word of DVSR
;
L3:
mov ebx,eax ; ebx:ecx <- divisor
mov ecx,LOWORD(DVSR)
mov edx,HIWORD(DVND) ; edx:eax <- dividend
mov eax,LOWORD(DVND)
L5:
shr ebx,1 ; shift divisor right one bit
rcr ecx,1
shr edx,1 ; shift dividend right one bit
rcr eax,1
or ebx,ebx
jnz short L5 ; loop until divisor < 4194304K
div ecx ; now divide, ignore remainder
;
; We may be off by one, so to check, we will multiply the quotient
; by the divisor and check the result against the orignal dividend
; Note that we must also check for overflow, which can occur if the
; dividend is close to 2**64 and the quotient is off by 1.
;
mov ecx,eax ; save a copy of quotient in ECX
mul dword ptr HIWORD(DVSR)
xchg ecx,eax ; save product, get quotient in EAX
mul dword ptr LOWORD(DVSR)
add edx,ecx ; EDX:EAX = QUOT * DVSR
jc short L6 ; carry means Quotient is off by 1
;
; do long compare here between original dividend and the result of the
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
; subtract the original divisor from the result.
;
cmp edx,HIWORD(DVND) ; compare hi words of result and original
ja short L6 ; if result > original, do subtract
jb short L7 ; if result < original, we are ok
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
jbe short L7 ; if less or equal we are ok, else subtract
L6:
sub eax,LOWORD(DVSR) ; subtract divisor from result
sbb edx,HIWORD(DVSR)
L7:
;
; Calculate remainder by subtracting the result from the original dividend.
; Since the result is already in a register, we will do the subtract in the
; opposite direction and negate the result if necessary.
;
sub eax,LOWORD(DVND) ; subtract dividend from result
sbb edx,HIWORD(DVND)
;
; Now check the result sign flag to see if the result is supposed to be positive
; or negative. It is currently negated (because we subtracted in the 'wrong'
; direction), so if the sign flag is set we are done, otherwise we must negate
; the result to make it positive again.
;
dec edi ; check result sign flag
jns short L8 ; result is ok, restore stack and return
L4:
neg edx ; otherwise, negate the result
neg eax
sbb edx,0
;
; Just the cleanup left to do. edx:eax contains the quotient.
; Restore the saved registers and return.
;
L8:
pop edi
pop ebx
ret 16
__allrem ENDP
;***
;llshl.asm - long shift left
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; define long shift left routine (signed and unsigned are same)
; __allshl
;
;Revision History:
; 11-??-83 HS initial version
; 11-30-83 DFW added medium model support
; 03-12-84 DFW broke apart; added long model support
; 06-01-84 RN modified to use cmacros
; 11-28-89 GJF Fixed copyright
; 11-19-93 SMK Modified to work on 64 bit integers
; 01-17-94 GJF Minor changes to build with NT's masm386.
; 07-08-94 GJF Faster, fatter version for NT.
; 07-13-94 GJF Further improvements from JonM.
;
;*******************************************************************************
;***
;llshl - long shift left
;
;Purpose:
; Does a Long Shift Left (signed and unsigned are identical)
; Shifts a long left any number of bits.
;
;Entry:
; EDX:EAX - long value to be shifted
; CL - number of bits to shift by
;
;Exit:
; EDX:EAX - shifted value
;
;Uses:
; CL is destroyed.
;
;Exceptions:
;
;*******************************************************************************
__allshl PROC NEAR
;
; Handle shifts of 64 or more bits (all get 0)
;
cmp cl, 64
jae short RETZERO
;
; Handle shifts of between 0 and 31 bits
;
cmp cl, 32
jae short MORE32
shld edx,eax,cl
shl eax,cl
ret
;
; Handle shifts of between 32 and 63 bits
;
MORE32:
mov edx,eax
xor eax,eax
and cl,31
shl edx,cl
ret
;
; return 0 in edx:eax
;
RETZERO:
xor eax,eax
xor edx,edx
ret
__allshl ENDP
;***
;llshr.asm - long shift right
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; define signed long shift right routine
; __allshr
;
;Revision History:
; 11-??-83 HS initial version
; 11-30-83 DFW added medium model support
; 03-12-84 DFW broke apart; added long model support
; 06-01-84 RN modified to use cmacros
; 11-28-89 GJF Fixed copyright
; 11-19-93 SMK Modified to work on 64 bit integers
; 01-17-94 GJF Minor changes to build with NT's masm386.
; 07-08-94 GJF Faster, fatter version for NT.
; 07-13-94 GJF Further improvements from JonM.
;
;*******************************************************************************
;***
;llshr - long shift right
;
;Purpose:
; Does a signed Long Shift Right
; Shifts a long right any number of bits.
;
;Entry:
; EDX:EAX - long value to be shifted
; CL - number of bits to shift by
;
;Exit:
; EDX:EAX - shifted value
;
;Uses:
; CL is destroyed.
;
;Exceptions:
;
;*******************************************************************************
__allshr PROC NEAR
;
; Handle shifts of 64 bits or more (if shifting 64 bits or more, the result
; depends only on the high order bit of edx).
;
cmp cl,64
jae short RETSIGN
;
; Handle shifts of between 0 and 31 bits
;
cmp cl, 32
jae short MORE32
shrd eax,edx,cl
sar edx,cl
ret
;
; Handle shifts of between 32 and 63 bits
;
MORE32:
mov eax,edx
sar edx,31
and cl,31
sar eax,cl
ret
;
; Return double precision 0 or -1, depending on the sign of edx
;
RETSIGN:
sar edx,31
mov eax,edx
ret
__allshr ENDP
;***
;ulldiv.asm - unsigned long divide routine
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; defines the unsigned long divide routine
; __aulldiv
;
;Revision History:
; 11-29-83 DFW initial version
; 06-01-84 RN modified to use cmacros
; 10-23-87 SKS fixed off-by-1 error for dividend close to 2**32.
; 05-18-89 SKS Remove redundant "MOV SP,BP" from epilog
; 11-28-89 GJF Fixed copyright
; 11-19-93 SMK Modified to work on 64 bit integers
; 01-17-94 GJF Minor changes to build with NT's masm386.
; 07-22-94 GJF Use esp-relative addressing for args. Shortened
; conditional jumps. Also, don't use xchg to do a
; simple move between regs.
;
;*******************************************************************************
;***
;ulldiv - unsigned long divide
;
;Purpose:
; Does a unsigned long divide of the arguments. Arguments are
; not changed.
;
;Entry:
; Arguments are passed on the stack:
; 1st pushed: divisor (QWORD)
; 2nd pushed: dividend (QWORD)
;
;Exit:
; EDX:EAX contains the quotient (dividend/divisor)
; NOTE: this routine removes the parameters from the stack.
;
;Uses:
; ECX
;
;Exceptions:
;
;*******************************************************************************
__aulldiv PROC NEAR
push ebx
push esi
; Set up the local stack and save the index registers. When this is done
; the stack frame will look as follows (assuming that the expression a/b will
; generate a call to uldiv(a, b)):
;
; -----------------
; | |
; |---------------|
; | |
; |--divisor (b)--|
; | |
; |---------------|
; | |
; |--dividend (a)-|
; | |
; |---------------|
; | return addr** |
; |---------------|
; | EBX |
; |---------------|
; ESP---->| ESI |
; -----------------
;
DVND equ [esp + 12] ; stack address of dividend (a)
DVSR equ [esp + 20] ; stack address of divisor (b)
;
; Now do the divide. First look to see if the divisor is less than 4194304K.
; If so, then we can use a simple algorithm with word divides, otherwise
; things get a little more complex.
;
mov eax,HIWORD(DVSR) ; check to see if divisor < 4194304K
or eax,eax
jnz short L1 ; nope, gotta do this the hard way
mov ecx,LOWORD(DVSR) ; load divisor
mov eax,HIWORD(DVND) ; load high word of dividend
xor edx,edx
div ecx ; get high order bits of quotient
mov ebx,eax ; save high bits of quotient
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
div ecx ; get low order bits of quotient
mov edx,ebx ; edx:eax <- quotient hi:quotient lo
jmp short L2 ; restore stack and return
;
; Here we do it the hard way. Remember, eax contains DVSRHI
;
L1:
mov ecx,eax ; ecx:ebx <- divisor
mov ebx,LOWORD(DVSR)
mov edx,HIWORD(DVND) ; edx:eax <- dividend
mov eax,LOWORD(DVND)
L3:
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
rcr ebx,1
shr edx,1 ; shift dividend right one bit; hi bit <- 0
rcr eax,1
or ecx,ecx
jnz short L3 ; loop until divisor < 4194304K
div ebx ; now divide, ignore remainder
mov esi,eax ; save quotient
;
; We may be off by one, so to check, we will multiply the quotient
; by the divisor and check the result against the orignal dividend
; Note that we must also check for overflow, which can occur if the
; dividend is close to 2**64 and the quotient is off by 1.
;
mul dword ptr HIWORD(DVSR) ; QUOT * HIWORD(DVSR)
mov ecx,eax
mov eax,LOWORD(DVSR)
mul esi ; QUOT * LOWORD(DVSR)
add edx,ecx ; EDX:EAX = QUOT * DVSR
jc short L4 ; carry means Quotient is off by 1
;
; do long compare here between original dividend and the result of the
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
; subtract one (1) from the quotient.
;
cmp edx,HIWORD(DVND) ; compare hi words of result and original
ja short L4 ; if result > original, do subtract
jb short L5 ; if result < original, we are ok
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
jbe short L5 ; if less or equal we are ok, else subtract
L4:
dec esi ; subtract 1 from quotient
L5:
xor edx,edx ; edx:eax <- quotient
mov eax,esi
;
; Just the cleanup left to do. edx:eax contains the quotient.
; Restore the saved registers and return.
;
L2:
pop esi
pop ebx
ret 16
__aulldiv ENDP
;***
;ulldvrm.asm - unsigned long divide and remainder routine
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; defines the unsigned long divide and remainder routine
; __aulldvrm
;
;Revision History:
; 10-06-98 SMK Initial version.
;
;*******************************************************************************
;***
;ulldvrm - unsigned long divide and remainder
;
;Purpose:
; Does a unsigned long divide and remainder of the arguments. Arguments
; are not changed.
;
;Entry:
; Arguments are passed on the stack:
; 1st pushed: divisor (QWORD)
; 2nd pushed: dividend (QWORD)
;
;Exit:
; EDX:EAX contains the quotient (dividend/divisor)
; EBX:ECX contains the remainder (divided % divisor)
; NOTE: this routine removes the parameters from the stack.
;
;Uses:
; ECX
;
;Exceptions:
;
;*******************************************************************************
__aulldvrm PROC NEAR
push esi
; Set up the local stack and save the index registers. When this is done
; the stack frame will look as follows (assuming that the expression a/b will
; generate a call to aulldvrm(a, b)):
;
; -----------------
; | |
; |---------------|
; | |
; |--divisor (b)--|
; | |
; |---------------|
; | |
; |--dividend (a)-|
; | |
; |---------------|
; | return addr** |
; |---------------|
; ESP---->| ESI |
; -----------------
;
DVND equ [esp + 8] ; stack address of dividend (a)
DVSR equ [esp + 16] ; stack address of divisor (b)
;
; Now do the divide. First look to see if the divisor is less than 4194304K.
; If so, then we can use a simple algorithm with word divides, otherwise
; things get a little more complex.
;
mov eax,HIWORD(DVSR) ; check to see if divisor < 4194304K
or eax,eax
jnz short L1 ; nope, gotta do this the hard way
mov ecx,LOWORD(DVSR) ; load divisor
mov eax,HIWORD(DVND) ; load high word of dividend
xor edx,edx
div ecx ; get high order bits of quotient
mov ebx,eax ; save high bits of quotient
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
div ecx ; get low order bits of quotient
mov esi,eax ; ebx:esi <- quotient
;
; Now we need to do a multiply so that we can compute the remainder.
;
mov eax,ebx ; set up high word of quotient
mul dword ptr LOWORD(DVSR) ; HIWORD(QUOT) * DVSR
mov ecx,eax ; save the result in ecx
mov eax,esi ; set up low word of quotient
mul dword ptr LOWORD(DVSR) ; LOWORD(QUOT) * DVSR
add edx,ecx ; EDX:EAX = QUOT * DVSR
jmp short L2 ; complete remainder calculation
;
; Here we do it the hard way. Remember, eax contains DVSRHI
;
L1:
mov ecx,eax ; ecx:ebx <- divisor
mov ebx,LOWORD(DVSR)
mov edx,HIWORD(DVND) ; edx:eax <- dividend
mov eax,LOWORD(DVND)
L3:
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
rcr ebx,1
shr edx,1 ; shift dividend right one bit; hi bit <- 0
rcr eax,1
or ecx,ecx
jnz short L3 ; loop until divisor < 4194304K
div ebx ; now divide, ignore remainder
mov esi,eax ; save quotient
;
; We may be off by one, so to check, we will multiply the quotient
; by the divisor and check the result against the orignal dividend
; Note that we must also check for overflow, which can occur if the
; dividend is close to 2**64 and the quotient is off by 1.
;
mul dword ptr HIWORD(DVSR) ; QUOT * HIWORD(DVSR)
mov ecx,eax
mov eax,LOWORD(DVSR)
mul esi ; QUOT * LOWORD(DVSR)
add edx,ecx ; EDX:EAX = QUOT * DVSR
jc short L4 ; carry means Quotient is off by 1
;
; do long compare here between original dividend and the result of the
; multiply in edx:eax. If original is larger or equal, we are ok, otherwise
; subtract one (1) from the quotient.
;
cmp edx,HIWORD(DVND) ; compare hi words of result and original
ja short L4 ; if result > original, do subtract
jb short L5 ; if result < original, we are ok
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
jbe short L5 ; if less or equal we are ok, else subtract
L4:
dec esi ; subtract 1 from quotient
sub eax,LOWORD(DVSR) ; subtract divisor from result
sbb edx,HIWORD(DVSR)
L5:
xor ebx,ebx ; ebx:esi <- quotient
L2:
;
; Calculate remainder by subtracting the result from the original dividend.
; Since the result is already in a register, we will do the subtract in the
; opposite direction and negate the result.
;
sub eax,LOWORD(DVND) ; subtract dividend from result
sbb edx,HIWORD(DVND)
neg edx ; otherwise, negate the result
neg eax
sbb edx,0
;
; Now we need to get the quotient into edx:eax and the remainder into ebx:ecx.
;
mov ecx,edx
mov edx,ebx
mov ebx,ecx
mov ecx,eax
mov eax,esi
;
; Just the cleanup left to do. edx:eax contains the quotient.
; Restore the saved registers and return.
;
pop esi
ret 16
__aulldvrm ENDP
;***
;ullrem.asm - unsigned long remainder routine
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; defines the unsigned long remainder routine
; __aullrem
;
;Revision History:
; 11-29-83 DFW initial version
; 06-01-84 RN modified to use cmacros
; 10-23-87 SKS fixed off-by-1 error for dividend close to 2**32.
; 05-18-89 SKS Remove redundant "MOV SP,BP" from epilog
; 11-28-89 GJF Fixed copyright
; 11-19-93 SMK Modified to work on 64 bit integers
; 01-17-94 GJF Minor changes to build with NT's masm386.
; 07-22-94 GJF Use esp-relative addressing for args. Shortened
; conditional jumps.
;
;*******************************************************************************
;***
;ullrem - unsigned long remainder
;
;Purpose:
; Does a unsigned long remainder of the arguments. Arguments are
; not changed.
;
;Entry:
; Arguments are passed on the stack:
; 1st pushed: divisor (QWORD)
; 2nd pushed: dividend (QWORD)
;
;Exit:
; EDX:EAX contains the remainder (dividend%divisor)
; NOTE: this routine removes the parameters from the stack.
;
;Uses:
; ECX
;
;Exceptions:
;
;*******************************************************************************
__aullrem PROC NEAR
push ebx
; Set up the local stack and save the index registers. When this is done
; the stack frame will look as follows (assuming that the expression a%b will
; generate a call to ullrem(a, b)):
;
; -----------------
; | |
; |---------------|
; | |
; |--divisor (b)--|
; | |
; |---------------|
; | |
; |--dividend (a)-|
; | |
; |---------------|
; | return addr** |
; |---------------|
; ESP---->| EBX |
; -----------------
;
DVND equ [esp + 8] ; stack address of dividend (a)
DVSR equ [esp + 16] ; stack address of divisor (b)
; Now do the divide. First look to see if the divisor is less than 4194304K.
; If so, then we can use a simple algorithm with word divides, otherwise
; things get a little more complex.
;
mov eax,HIWORD(DVSR) ; check to see if divisor < 4194304K
or eax,eax
jnz short L1 ; nope, gotta do this the hard way
mov ecx,LOWORD(DVSR) ; load divisor
mov eax,HIWORD(DVND) ; load high word of dividend
xor edx,edx
div ecx ; edx <- remainder, eax <- quotient
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
div ecx ; edx <- final remainder
mov eax,edx ; edx:eax <- remainder
xor edx,edx
jmp short L2 ; restore stack and return
;
; Here we do it the hard way. Remember, eax contains DVSRHI
;
L1:
mov ecx,eax ; ecx:ebx <- divisor
mov ebx,LOWORD(DVSR)
mov edx,HIWORD(DVND) ; edx:eax <- dividend
mov eax,LOWORD(DVND)
L3:
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
rcr ebx,1
shr edx,1 ; shift dividend right one bit; hi bit <- 0
rcr eax,1
or ecx,ecx
jnz short L3 ; loop until divisor < 4194304K
div ebx ; now divide, ignore remainder
;
; We may be off by one, so to check, we will multiply the quotient
; by the divisor and check the result against the orignal dividend
; Note that we must also check for overflow, which can occur if the
; dividend is close to 2**64 and the quotient is off by 1.
;
mov ecx,eax ; save a copy of quotient in ECX
mul dword ptr HIWORD(DVSR)
xchg ecx,eax ; put partial product in ECX, get quotient in EAX
mul dword ptr LOWORD(DVSR)
add edx,ecx ; EDX:EAX = QUOT * DVSR
jc short L4 ; carry means Quotient is off by 1
;
; do long compare here between original dividend and the result of the
; multiply in edx:eax. If original is larger or equal, we're ok, otherwise
; subtract the original divisor from the result.
;
cmp edx,HIWORD(DVND) ; compare hi words of result and original
ja short L4 ; if result > original, do subtract
jb short L5 ; if result < original, we're ok
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
jbe short L5 ; if less or equal we're ok, else subtract
L4:
sub eax,LOWORD(DVSR) ; subtract divisor from result
sbb edx,HIWORD(DVSR)
L5:
;
; Calculate remainder by subtracting the result from the original dividend.
; Since the result is already in a register, we will perform the subtract in
; the opposite direction and negate the result to make it positive.
;
sub eax,LOWORD(DVND) ; subtract original dividend from result
sbb edx,HIWORD(DVND)
neg edx ; and negate it
neg eax
sbb edx,0
;
; Just the cleanup left to do. dx:ax contains the remainder.
; Restore the saved registers and return.
;
L2:
pop ebx
ret 16
__aullrem ENDP
;***
;ullshr.asm - long shift right
;
; Copyright (c) Microsoft Corporation. All rights reserved.
;
;Purpose:
; define unsigned long shift right routine
; __aullshr
;
;Revision History:
; 11-??-83 HS initial version
; 11-30-83 DFW added medium model support
; 03-12-84 DFW broke apart; added long model support
; 06-01-84 RN modified to use cmacros
; 11-28-89 GJF Fixed copyright
; 11-19-93 SMK Modified to work on 64 bit integers
; 01-17-94 GJF Minor changes to build with NT's masm386.
; 07-08-94 GJF Faster, fatter version for NT.
; 07-13-94 GJF Further improvements from JonM.
;
;*******************************************************************************
;***
;ullshr - long shift right
;
;Purpose:
; Does a unsigned Long Shift Right
; Shifts a long right any number of bits.
;
;Entry:
; EDX:EAX - long value to be shifted
; CL - number of bits to shift by
;
;Exit:
; EDX:EAX - shifted value
;
;Uses:
; CL is destroyed.
;
;Exceptions:
;
;*******************************************************************************
__aullshr PROC NEAR
;
; Handle shifts of 64 bits or more (if shifting 64 bits or more, the result
; depends only on the high order bit of edx).
;
cmp cl,64
jae short RETZERO
;
; Handle shifts of between 0 and 31 bits
;
cmp cl, 32
jae short MORE32
shrd eax,edx,cl
shr edx,cl
ret
;
; Handle shifts of between 32 and 63 bits
;
MORE32:
mov eax,edx
xor edx,edx
and cl,31
shr eax,cl
ret
;
; return 0 in edx:eax
;
RETZERO:
xor eax,eax
xor edx,edx
ret
__aullshr ENDP
end