singrdk/base/Kernel/Singularity.Hal.LegacyPC/CalibrateTimer.cs

283 lines
10 KiB
C#

///////////////////////////////////////////////////////////////////////////////
//
// Microsoft Research Singularity
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// File: CalibrateTimers.cs
//
// Note:
//
// #define VERBOSE
using System;
using Microsoft.Singularity.Hal;
using Microsoft.Singularity.Hal.Acpi;
namespace Microsoft.Singularity.Hal
{
[ CLSCompliant(false) ]
internal sealed class CalibrateTimers
{
private static int ApproxLog10(ulong value)
{
ulong thresh = 4;
for (int i = 0; i < 20; i++)
{
if (thresh >= value)
{
return i;
}
thresh *= 10;
}
return 0;
}
private static int MinSpread(ulong [] values, int width)
{
ulong maxIre = 0; // Inverse-relative error
int minCenter = 0;
for (int i = 0; i < values.Length - width; i++)
{
ulong delta = values[i + width - 1] - values[i];
ulong ire = values[i + width / 2] / (delta + 1);
if (ire > maxIre)
{
maxIre = ire;
minCenter = i + width / 2;
}
}
return minCenter;
}
private static void DisplayResults(ulong tscHz, int i8254Hz)
{
DebugStub.Print("TSC measured at {0} MHz\n",
__arglist((int)(tscHz / 1000000)));
DebugStub.Print("i8254 measured at {0} Hz\n",
__arglist(i8254Hz));
}
internal static bool Run(PMTimer pmtimer, Timer8254 i8254)
{
const int testRuns = 8;
int attempts = 0;
const uint pmMask = 0xffffffu;
const ulong tscMask = 0xffffffffffff;
const int i8254Mask = 0xffff;
ulong [] tscHz = new ulong[testRuns];
ulong [] i8254Hz = new ulong[testRuns];
uint [] pmGoal = new uint[testRuns];
uint [] pmActual = new uint[testRuns];
i8254.Timer2Start();
measure:
attempts ++;
for (uint i = 0; i < testRuns; i++)
{
uint testHz = 2u + (i % 5u);
uint pmAccum = 0;
uint pmLast = pmtimer.Value & pmMask;
uint pmEnd = PMTimer.FrequencyHz / testHz;
ulong tscStart = Processor.CycleCount;
ulong tscEnd = 0;
int i8254Accum = 0;
int i8254Last = i8254.Timer2Read();
while (pmAccum < pmEnd)
{
// Spin to burn on few
// clock cycles. On real hardware we stall
// reading the timers. On VPC we see the
// PMTimer go backwards occasionally when
// hammering it so we call SpinWait to
// reduce the chance of observing it go
// backwards.
//
// Note: We explicitly use Thread.SpinWait
// since it will not be optimized out,
// unlike a simple spin loop.
System.Threading.Thread.SpinWait(10000);
uint pmNow = pmtimer.Value & pmMask;
if (pmNow < pmLast) {
// On VPC the PM
// timer occasionally goes backwards and
// this leads to bogus calibration
// points.
if (pmLast - pmNow < PMTimer.FrequencyHz / 2) {
// ignore measurement
continue;
}
// Clock wrap, measurement okay.
}
pmAccum += (pmNow + (pmMask + 1) - pmLast) & pmMask;
pmLast = pmNow;
tscEnd = Processor.CycleCount;
int i8254Now = i8254.Timer2Read();
i8254Accum += ((i8254Mask + 1) + i8254Last - i8254Now) &
i8254Mask;
i8254Last = i8254Now;
}
ulong tscDelta = (tscEnd + (tscMask + 1) - tscStart) & tscMask;
tscHz[i] = tscDelta * PMTimer.FrequencyHz / pmAccum;
i8254Hz[i] = (ulong)i8254Accum * PMTimer.FrequencyHz / pmAccum;
pmGoal[i] = pmEnd;
pmActual[i] = pmAccum;
}
#region -*- temporary failure debugging support -*-
ulong[] tscHzBackup = new ulong[tscHz.Length];
ulong[] i8254HzBackup = new ulong[i8254Hz.Length];
Array.Copy(tscHz, tscHzBackup, tscHz.Length);
Array.Copy(i8254Hz, i8254HzBackup, i8254Hz.Length);
#endregion
Array.Sort(tscHz);
Array.Sort(i8254Hz);
bool noisyClock = false;
// Re-measure if values are obviously bogus as can occur with
// VPC. Check is minimum value is less than n% of maximum
// value.
bool tscFailed = tscHz[0] < 3 * tscHz[testRuns - 1] / 4;
bool i8254Failed = i8254Hz[0] < 3 * i8254Hz[testRuns - 1] / 4;
if (tscFailed || i8254Failed) {
if (attempts < 10) {
noisyClock = true;
DebugStub.Print("CLOCK CALIBRATION FAILED");
if (tscFailed && i8254Failed) {
DebugStub.Print(" (tsc and i2854) ");
}
else if (tscFailed) {
DebugStub.Print(" (tsc only) " );
}
else {
DebugStub.Print(" (i8254 only) " );
}
DebugStub.Print("RETRYING.\n");
for (int i = 0; i < tscHzBackup.Length; i++) {
DebugStub.Print("tscHz {0} i8254Hz {1} pmGoal {2} pmActual {3}\n",
__arglist(tscHzBackup[i],
i8254HzBackup[i],
pmGoal[i],
pmActual[i]));
}
goto measure;
}
else {
DebugStub.Print("ALL CLOCK CALIBRATION ATTEMPTS FAILED.\n");
//
// TODO:
// Try to calibrate with rtClock
// SlowCalibration(rtClock, timer8254);
Processor.CyclesPerSecond = 1800 * 1000 * 1000;
i8254.SetTicksPerSecond(1193180);
return true;
}
}
ulong tscHzEstimate = tscHz[MinSpread(tscHz, 3)];
int i8254HzEstimate = (int) i8254Hz[MinSpread(i8254Hz, 3)];
DisplayResults(tscHzEstimate, i8254HzEstimate);
// Set measured frequencies in appropriate places.
Processor.CyclesPerSecond = tscHzEstimate;
i8254.SetTicksPerSecond(i8254HzEstimate);
//
// Range of measurements is a pretty good indicator of VPCness
// since it may have been descheduled during these measurements
// so timer measurements will be poor.
//
int oValue = ApproxLog10(tscHzEstimate);
int oRange = ApproxLog10(tscHz[testRuns - 1] - tscHz[0]);
if (oValue - oRange < 5)
{
DebugStub.Print("*** Noisy timing measurements. Looks like measurement on VPC or bad hardware. ***\n");
noisyClock = true;
}
return noisyClock;
}
internal static void Run(RTClock rtc, Timer8254 i8254)
{
// This test uses the RTC's update-in-progress bit, UIP, as
// a measure of 1 second of time. The UIP set period is
// around 240us which means we can safely read the
// i8254 in a loop without worrying about missing the
// bit being set / cleared because of i/o operations.
//
// This test fails horribly on VPC. It has problems with the
// update-in-progress bit in the RTC. Fortunately we should
// not get here on VPC.
//
// NB This routine does not try to be as rigorous as
// the PM Timer version as each calibration run
// takes much longer.
const int testRuns = 2;
int i8254Last = 0;
int i8254Now = 0;
int i8254Accum = 0;
int [] i8254Hz = new int [testRuns];
ulong tscLast = 0;
ulong tscNow = 0;
ulong [] tscHz = new ulong[testRuns];
i8254.Timer2Start();
do
{
tscLast = Processor.CycleCount;
i8254Last = i8254.Timer2Read();
} while (rtc.UpdateInProgress() == false);
for (int i = 0; i < testRuns; i++)
{
while (rtc.UpdateInProgress() == true)
;
do
{
tscNow = Processor.CycleCount;
i8254Now = i8254.Timer2Read();
i8254Accum += (0x10000 + i8254Last - i8254Now) & 0xffff;
i8254Last = i8254Now;
}
while (rtc.UpdateInProgress() == false);
tscHz[i] = (tscNow + 0x1000000000000 - tscLast)&0xffffffffffff;
tscLast = tscNow;
i8254Hz[i] = i8254Accum;
i8254Accum = 0;
}
DisplayResults(tscHz[testRuns - 1], i8254Hz[testRuns - 1]);
Processor.CyclesPerSecond = tscHz[testRuns - 1];
i8254.SetTicksPerSecond(i8254Hz[testRuns - 1]);
}
}
}