166 lines
5.6 KiB
C#
166 lines
5.6 KiB
C#
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Microsoft Research Singularity
|
|
//
|
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
//
|
|
// File: RtcPitState.cs
|
|
//
|
|
// Useful reference URLs:
|
|
// http://developer.intel.com/design/archives/periphrl/index.htm
|
|
// http://developer.intel.com/design/archives/periphrl/docs/7203.htm
|
|
// http://developer.intel.com/design/archives/periphrl/docs/23124406.htm
|
|
//
|
|
// The basic ideas for this driver come from the MMOSA code,
|
|
// though the implementation differs. This is partly because
|
|
// the code needs to run on Virtual PC and it isn't able to do
|
|
// a very accurate emulation of the i8254.
|
|
//
|
|
// There are two source available for timing - the Real-Time
|
|
// Clock (RTC) and the programmable interval timer (PIT). The
|
|
// standard PC RTC is based on derivatives of the Motorola
|
|
// MC146818A. It's able to provide the time with a resolution
|
|
// of 1 second and also has a programmable periodic interrupt.
|
|
//
|
|
// The programmable interrupt timer is based on the i8254. It
|
|
// can be programmed in a variety of modes - we use it to
|
|
// generate an interrupt at a configurable time in the future
|
|
// and then reprogram it each interrupt. The maximum interrupt
|
|
// period is 65535 ticks of a 1.193MHz clock.
|
|
//
|
|
// We use both of the RTC and the programmable interrupt timer to
|
|
// maintain our estimate of the current time. The RTC provides granularity
|
|
// to with 1/64 seconds and the time is used to get an estimate to within
|
|
// 1/1.193 * 10e-6 seconds within each RTC interval.
|
|
//
|
|
// The key variables are:
|
|
//
|
|
// upTime - the time the system has been up. This variable gets
|
|
// updated during the periodic RTC interrupt handling
|
|
// (delta = 1/64Hz).
|
|
//
|
|
// pitLast - the last value programmed into the PIT. The PIT counts down
|
|
// and generates an interrupt at (or shortly after) the instant
|
|
// the current PIT value reaches zero.
|
|
//
|
|
// pitAccum - the accumulated time measured by the PIT since upTime
|
|
// was updated.
|
|
//
|
|
// The current kernel time is always:
|
|
// upTime + pitAccum + (pitLast - pitCurrent)
|
|
//
|
|
// The PIT is always programmed to run, either by the consumer of the timer
|
|
// interface or by the timer itself.
|
|
//
|
|
// Timer::SetNextInterrupt(t)
|
|
// pitAccum += (pitLast - pitCurrent)
|
|
// // program PIT (not shown)
|
|
// pitLast = t
|
|
//
|
|
// Timer::Interrupt()
|
|
// pitAccum += pitLast;
|
|
// // But PIT time may accumulate between interrupt dispatch and crossing
|
|
// // Zero so.
|
|
// if (pitCurrent != 0)
|
|
// pitAccum += (MaxPitValue - pitCurrent)
|
|
// // Inform user of interrupt
|
|
// if (userNotScheduledInterrupt)
|
|
// SetNextInterrupt(MaxInterruptInterval)
|
|
//
|
|
// RTC::Interrupt()
|
|
// pitLast = pitNow
|
|
// pitAccum = 0
|
|
// upTime += RTCInterruptPeriod
|
|
//
|
|
// All of these methods are atomic interrupt-wise.
|
|
//
|
|
// Note: if we want to test the accuracy of the timer over a
|
|
// period we can set RTC::Interrupt to just return without
|
|
// touching any variables. All of the time accumulated will end
|
|
// up in pitAccum.
|
|
//
|
|
// Conditionals
|
|
//
|
|
// TIMER_NO_GO - disables timer and scheduling of timer interrupts.
|
|
//
|
|
// RTC_NO_GO - disable RTC.
|
|
//
|
|
// DEBUG_TIMER - enable timer debug messages and boot-time diagnostics.
|
|
//
|
|
// DEBUG_CLOCK - enable clock debug messages
|
|
//
|
|
// LOG_CLOCK - log adjustments to clock time and dump out later.
|
|
//
|
|
// LOG_SNI - log calls to SetNextInterrupt to see what's being thrown in.
|
|
//
|
|
// Tip: When this code does not behave useful things to check
|
|
// are the interrupt rate and the rate of calls to
|
|
// SetNextInterrupt.
|
|
//
|
|
|
|
// #define VERBOSE
|
|
|
|
using Microsoft.Singularity.Io;
|
|
|
|
using System;
|
|
using System.Runtime.CompilerServices;
|
|
using System.Diagnostics;
|
|
using System.Threading;
|
|
|
|
namespace Microsoft.Singularity.Hal
|
|
{
|
|
// Shared time state between RTClock and Programmable Timer
|
|
[ CLSCompliant(false) ]
|
|
internal sealed class RtcPitState
|
|
{
|
|
/// <remarks>
|
|
/// System up time as measured by the <see>RTClock</see>. This value
|
|
/// is only updated by the RTClock.
|
|
/// </remarks>
|
|
internal long upTime = 0;
|
|
|
|
internal volatile int pitLastClock;
|
|
|
|
/// <remarks>
|
|
/// Last time returned by GetKernelTicks. Used to check for time
|
|
/// going backwards. This can occur in PIT value updates in the
|
|
/// scaling between PIT timebase and kernel time base.
|
|
/// </remarks>
|
|
internal long lastKernelTicks = 0;
|
|
|
|
internal RtcPitState()
|
|
{
|
|
this.pitLastClock = 0xffff;
|
|
this.upTime = 0;
|
|
}
|
|
|
|
[NoHeapAllocation]
|
|
internal static int ComputePitOffset(int pitPrev, int pitNow)
|
|
{
|
|
if (pitPrev >= pitNow) {
|
|
return pitPrev - pitNow;
|
|
}
|
|
return pitPrev + 0xffff - pitNow;
|
|
}
|
|
|
|
[NoHeapAllocation]
|
|
internal long GetKernelTicks(int pitNow)
|
|
{
|
|
int pitOffset = ComputePitOffset(this.pitLastClock, pitNow);
|
|
long delta = Timer8254.PitTicksToTimeSpanTicks(pitOffset);
|
|
long r = this.upTime + delta;
|
|
|
|
if (r < this.lastKernelTicks)
|
|
{
|
|
// This should only be by a few ticks.
|
|
// Something to look for if you are ever
|
|
// working on this code.
|
|
r = this.lastKernelTicks;
|
|
} else {
|
|
this.lastKernelTicks = r;
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
}
|