singrdk/base/Kernel/System/Double.cs

210 lines
8.1 KiB
C#

// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
/*============================================================
**
** Class: Double
**
**
** Purpose: A representation of an IEEE double precision
** floating point number.
**
** Date: July 23, 1998
**
===========================================================*/
namespace System {
using System;
using System.Globalization;
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
//| <include path='docs/doc[@for="Double"]/*' />
[StructLayout(LayoutKind.Sequential)]
public struct Double : IComparable, IFormattable
{
internal double m_value;
//
// Public Constants
//
//| <include path='docs/doc[@for="Double.MinValue"]/*' />
public const double MinValue = -1.7976931348623157E+308;
//| <include path='docs/doc[@for="Double.MaxValue"]/*' />
public const double MaxValue = 1.7976931348623157E+308;
// Real value of Epsilon: 4.9406564584124654e-324 (0x1), but JVC misparses that
// number, giving 2*Epsilon (0x2).
//| <include path='docs/doc[@for="Double.Epsilon"]/*' />
public const double Epsilon = 4.9406564584124650E-324;
//| <include path='docs/doc[@for="Double.NegativeInfinity"]/*' />
public const double NegativeInfinity = (double)-1.0 / (double)(0.0);
//| <include path='docs/doc[@for="Double.PositiveInfinity"]/*' />
public const double PositiveInfinity = (double)1.0 / (double)(0.0);
//| <include path='docs/doc[@for="Double.NaN"]/*' />
public const double NaN = (double)0.0 / (double)0.0;
//
// Private constants
//
private const ulong PositiveInfinityAsUInt64 = 0x7ff0000000000000;
private const ulong NegativeInfinityAsUInt64 = 0xfff0000000000000;
private const ulong ExponentAsUInt64 = 0xfff0000000000000;
private const ulong MantissaAsUInt64 = 0x000fffffffffffff;
//
// Native Declarations
//
//| <include path='docs/doc[@for="Double.IsInfinity"]/*' />
public static bool IsInfinity(double d) {
ulong v = BitConverter.DoubleToUInt64Bits(d);
return (v == PositiveInfinityAsUInt64 ||
v == NegativeInfinityAsUInt64);
}
//| <include path='docs/doc[@for="Double.IsPositiveInfinity"]/*' />
public static bool IsPositiveInfinity(double d) {
ulong v = BitConverter.DoubleToUInt64Bits(d);
return (v == PositiveInfinityAsUInt64);
}
//| <include path='docs/doc[@for="Double.IsNegativeInfinity"]/*' />
public static bool IsNegativeInfinity(double d) {
ulong v = BitConverter.DoubleToUInt64Bits(d);
return (v == NegativeInfinityAsUInt64);
}
//| <include path='docs/doc[@for="Double.IsNaN"]/*' />
public static bool IsNaN(double d) {
// rusa: see also Lightning\Src\ClassLibNative\Float\COMFloat::IsNAN
ulong v = BitConverter.DoubleToUInt64Bits(d);
return (((v & PositiveInfinityAsUInt64) == v) &&
((v & MantissaAsUInt64) != 0));
}
// Compares this object to another object, returning an instance of System.Relation.
// Null is considered less than any instance.
//
// If object is not of type Double, this method throws an ArgumentException.
//
// Returns a value less than zero if this object
//
//| <include path='docs/doc[@for="Double.CompareTo"]/*' />
public int CompareTo(Object value) {
if (value == null) {
return 1;
}
if (value is Double) {
double d = (double)value;
if (m_value < d) return -1;
if (m_value > d) return 1;
if (m_value == d) return 0;
// At least one of the values is NaN.
// This is busted; NaNs should never compare equal
if (IsNaN(m_value))
return (IsNaN(d) ? 0 : -1);
else
return 1;
}
throw new ArgumentException("Arg_MustBeDouble");
}
// True if obj is another Double with the same value as the current instance. This is
// a method of object equality, that only returns true if obj is also a double.
//| <include path='docs/doc[@for="Double.Equals"]/*' />
public override bool Equals(Object obj) {
if (!(obj is Double)) {
return false;
}
double temp = ((Double)obj).m_value;
// This code below is written this way for performance reasons i.e the != and == check is intentional.
if (temp == m_value) {
return true;
}
return IsNaN(temp) && IsNaN(m_value);
}
//The hashcode for a double is the absolute value of the integer representation
//of that double.
//
//| <include path='docs/doc[@for="Double.GetHashCode"]/*' />
public override int GetHashCode() {
long value = unchecked((long)BitConverter.DoubleToUInt64Bits(m_value));
return ((int)value) ^ ((int)(value >> 32));
}
//| <include path='docs/doc[@for="Double.ToString"]/*' />
public override String ToString() {
return ToString(null);
}
//| <include path='docs/doc[@for="Double.ToString1"]/*' />
public String ToString(String format) {
return Number.FormatDouble(m_value, format);
}
//| <include path='docs/doc[@for="Double.Parse"]/*' />
public static double Parse(String s) {
return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands);
}
//| <include path='docs/doc[@for="Double.Parse1"]/*' />
public static double Parse(String s, NumberStyles style) {
try {
return Number.ParseDouble(s, style);
} catch (FormatException) {
//If we caught a FormatException, it may be from one of our special strings.
//Check the three with which we're concerned and rethrow if it's not one of
//those strings.
String sTrim = s.Trim();
if (sTrim.Equals(NumberFormatInfo.positiveInfinitySymbol)) {
return PositiveInfinity;
}
if (sTrim.Equals(NumberFormatInfo.negativeInfinitySymbol)) {
return NegativeInfinity;
}
if (sTrim.Equals(NumberFormatInfo.nanSymbol)) {
return NaN;
}
//Rethrow the previous exception;
throw;
}
}
//| <include path='docs/doc[@for="Double.TryParse"]/*' />
public static bool TryParse(String s, NumberStyles style, out double result) {
if (s == null) {
result = 0;
return false;
}
bool success = Number.TryParseDouble(s, style, out result);
if (!success) {
String sTrim = s.Trim();
if (sTrim.Equals(NumberFormatInfo.positiveInfinitySymbol)) {
result = PositiveInfinity;
} else if (sTrim.Equals(NumberFormatInfo.negativeInfinitySymbol)) {
result = NegativeInfinity;
} else if (sTrim.Equals(NumberFormatInfo.nanSymbol)) {
result = NaN;
} else
return false; // We really failed
}
return true;
}
//
// IValue implementation
//
//| <include path='docs/doc[@for="Double.GetTypeCode"]/*' />
[NoHeapAllocation]
public override TypeCode GetTypeCode() {
return TypeCode.Double;
}
}
}